Skip to main content
Log in

HIF-1α- and HIF-2α-Immunopositive Neurons and Capillaries in the Prefrontal Cerebral Cortex of Rats with Experimental Myocardial Infarction

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

The quantitative content of HIF-1α- and HIF-2α-immunopositive brain neurons in Wistar rats was studied 1, 15, and 30 days after modeling of myocardial infarction. In rats of the control group, the immunohistochemical markers HIF-1α and HIF-2α in the prefrontal cortex of the brain were determined in few pale-colored neurons and capillaries. One day after myocardial infarction simulation, the number of HIF-1α+ neurons increased, and on day 15 it reached the maximum level: the concentration of immunopositive neurons and capillaries increased by 24.7 and 18.4%, respectively, in comparison with the control. After 30 days, the number of HIF-1α+ structures decreased, but remained above the control values. The number of neurons and capillaries positively stained for HIF-2α peaked only on day 30 of the postinfarction period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yakushin SS, Nikulina NN, Seleznev SV. Miocardial Infarction. Moscow, 2019. Russian.

  2. Reed GW, Rossi JE, Cannon C.P. Acute myocardial infarction. Lancet. 2017;389:197-210. doi: https://doi.org/10.1016/S0140-6736(16)30677-8

    Article  PubMed  Google Scholar 

  3. Vysotsky SV, Pankova EP, Platonova NV, Seledtsov AM, Tikhova MV. Mental disorders that developed against the background of myocardial infarction. Kompleks. Probl. Serd.-Sosud. Zabolev. 2013;(3):90-92. Russian.

  4. Levin OS. Cognitive disorders in the therapeutical practice: cardiovascular diseases. Consilium Medicum. 2009;11(2):55-61. Russian.

  5. Chertok VM, Nevzorova VA, Zakharchuk NV, Chertok AG. The comparative characteristic of the neurons containing the hypoxia-inducible factor lalpha and 2alpha in the brain of rats at hypertension. Tsitologiya. 2018;60(11):883-888. Russian. doi: https://doi.org/10.1134/S0041377118110032

  6. Chertok VM, Nevzorova VA, Zakharchuk NV. Comparative study of HIF-1α- and HIF-2α-immunopositive neurons and capillaries in rat cortex under conditions of tissue hypoxia. Bull. Exp. Biol. Med. 2018;165(4):516-520. doi: https://doi.org/10.1007/s10517-018-4207-6

    Article  CAS  PubMed  Google Scholar 

  7. Vangeison G, Carr D, Federoff HJ, Rempe DA. The good, the bad, and the cell type-specific roles of hypoxia inducible factor-1 alpha in neurons and astrocytes. J. Neurosci. 2008;28(8):1988-1993. doi: https://doi.org/10.1523/JNEUROSCI.5323-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. López-Hernández B, Posadas I, Podlesniy P, Abad MA, Trullas R, Ceña V. HIF-1α is neuroprotective during the early phases of mild hypoxia in rat cortical neurons. Exp. Neurol. 2012;233(1):543-554. doi: https://doi.org/10.1016/j.expneurol.2011.11.040

    Article  CAS  PubMed  Google Scholar 

  9. Loboda A, Jozkowicz A, Dulak J. HIF-1 and HIF-2 transcription factors — similar but not identical. Mol. Cells. 2010;29(5):435-442. doi: https://doi.org/10.1007/s10059-010-0067-2

    Article  CAS  PubMed  Google Scholar 

  10. Nevzorova VA, Chertok VM, Brodskaya TA, Roshchenko RV, Plekhova NG. Experimental modeling of myocardial infarction in old rats. Tikhookean. Med. Zh. 2022;(2):72-74. Russian. doi: https://doi.org/10.34215/1609-1175-2022-2-72-74

  11. Mohindra V, Tripathi RK, Singh RK, Lal KK. Molecular characterization and expression analysis of three hypoxia-inducible factor alpha subunits, HIF-1α, -2α and -3α in hypoxia-tolerant Indian catfish, Clarias batrachus [Linnaeus, 1758]. Mol. Biol. Rep. 2013;40(10):5805-5815. doi: https://doi.org/10.1007/s11033-013-2685-1

    Article  CAS  PubMed  Google Scholar 

  12. Chertok VM, Zakharchuk NV, Chertok AG. Cellular-molecular mechanisms of the regulation of angiogenesis in the brain. Neurosci. Behav. Physiol. 2019;49(5):544-554. doi: https://doi.org/10.1007/s11055-019-00768-2

    Article  Google Scholar 

  13. Nevzorova VA, Chertok VM, Brodskaya TA, Selyukova PA, Zakharchuk NV. Mitochondrial dysfunction and vascular aging in comorbid pathology. Tikhookean. Med. Zh. 2022;(1):10-16. Russian. doi: https://doi.org/10.34215/1609-1175-2022-1-10-16

  14. Bon EI, Zimatkin SM, Maksimovich NYv. Effect of hypoxia on morphofunctional characteristics of brain neurons and molecular markers of ischemic hypoxia. Vestn. Smolensk. Gos. Med. Akad. 2021;20(1):51-56. doi: https://doi.org/10.37903/vsgma.2021.1.8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Chertok.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 175, No. 1, pp. 117-121, January, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chertok, V.M., Nevzorova, V.A. & Kotsyuba, A.E. HIF-1α- and HIF-2α-Immunopositive Neurons and Capillaries in the Prefrontal Cerebral Cortex of Rats with Experimental Myocardial Infarction. Bull Exp Biol Med 175, 101–105 (2023). https://doi.org/10.1007/s10517-023-05819-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-023-05819-w

Keywords

Navigation