Skip to main content

Advertisement

Log in

Neuronal loss and gliosis in the rat striatum subjected to 15 and 30 minutes of middle cerebral artery occlusion

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Selective neuronal death or loss in certain brain regions has been well characterized in animal models of transient global cerebral ischemia. However, selective neuronal death in transient focal cerebral ischemia needs more investigation. Therefore, in this study, we studied selective neuronal death in the striatum (caudate putamen) of rats subjected to 15 or 30 min middle cerebral artery occlusion (MCAO). Neuronal death occurred in the dorsolateral field, not in the medial field in 30 min, not 15 min, MCAO-operated rats 5 days after MCAO using neuronal nuclear antigen immunohistochemistry and Fluoro-Jade B histofluorescence staining. In this group, immunoreactivity of glial fibrillary acidic protein in astrocytes was hardly shown in the dorsolateral field, although the immunoreactivity increased in the medial field. In addition, immunoreactivity of ionized calcium binding adapter molecule 1 in microglia was dramatically increased in the dorsolateral, not in the medial, field only in 30 min MCAO-operated rats. Briefly, these results show that at least 30 min of MCAO can evoke selective neuronal death, astrocytic dysfunction and microglial activation in the dorsolateral field of the rat striatum and suggest that a rat model of 30 min MCAO can be used to investigate mechanisms of neuronal death and gliosis following brief transient focal cerebral ischemic events for acute transient ischemic attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bae EJ et al (2015) Comparison of immunoreactivities of calbindin-D28k, calretinin and parvalbumin in the striatum between young, adult and aged mice, rats and gerbils. Neurochem Res 40:864–872

    Article  PubMed  CAS  Google Scholar 

  • Crain BJ, Westerkam WD, Harrison AH, Nadler JV (1988) Selective neuronal death after transient forebrain ischemia in the Mongolian gerbil: a silver impregnation study. Neuroscience 27:387–402

    Article  PubMed  CAS  Google Scholar 

  • Crotti A et al (2014) Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nat Neurosci 17:513–521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gallyas F, Zoltay G, Dames W (1992) Formation of "dark" (argyrophilic) neurons of various origin proceeds with a common mechanism of biophysical nature (a novel hypothesis). Acta Neuropathol 83:504–509

    Article  PubMed  CAS  Google Scholar 

  • Gamdzyk M, Malek M, Bratek E, Koks A, Kaminski K, Ziembowicz A, Salinska E (2016) Hyperbaric oxygen and hyperbaric air preconditioning induces ischemic tolerance to transient forebrain ischemia in the gerbil. Brain Res 1648:257–265

    Article  PubMed  CAS  Google Scholar 

  • Garcia JH, Liu KF, Ye ZR, Gutierrez JA (1997) Incomplete infarct and delayed neuronal death after transient middle cerebral artery occlusion in rats. Stroke 28:2303–2309 discussion 2310

    Article  PubMed  CAS  Google Scholar 

  • Han HS, Qiao Y, Karabiyikoglu M, Giffard RG, Yenari MA (2002) Influence of mild hypothermia on inducible nitric oxide synthase expression and reactive nitrogen production in experimental stroke and inflammation. J Neurosci 22:3921–3928

    Article  PubMed  CAS  Google Scholar 

  • Hattori K, Lee H, Hurn PD, Crain BJ, Traystman RJ, DeVries AC (2000) Cognitive deficits after focal cerebral ischemia in mice. Stroke 31:1939–1944

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa K et al (2010) Inhibition of reactive astrocytes with fluorocitrate retards neurovascular remodeling and recovery after focal cerebral ischemia in mice. J Cereb Blood Flow Metab 30:871–882

    Article  PubMed  CAS  Google Scholar 

  • Huttner HB et al (2014) The age and genomic integrity of neurons after cortical stroke in humans. Nat Neurosci 17:801–803

    Article  PubMed  CAS  Google Scholar 

  • Katchanov J et al (2003) Selective neuronal vulnerability following mild focal brain ischemia in the mouse. Brain Pathol 13:452–464

    Article  PubMed  Google Scholar 

  • Kato H, Kogure K, Liu XH, Araki T, Itoyama Y (1996) Progressive expression of immunomolecules on activated microglia and invading leukocytes following focal cerebral ischemia in the rat. Brain Res 734:203–212

    Article  PubMed  CAS  Google Scholar 

  • Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69

    Article  PubMed  CAS  Google Scholar 

  • Lakhan SE, Kirchgessner A, Hofer M (2009) Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med 7:97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee JC et al (2013) Neuronal damage and gliosis in the somatosensory cortex induced by various durations of transient cerebral ischemia in gerbils. Brain Res 1510:78–88

    Article  PubMed  CAS  Google Scholar 

  • Lee JC et al (2016) New GABAergic Neurogenesis in the Hippocampal CA1 Region of a Gerbil Model of Long-Term Survival after Transient Cerebral Ischemic Injury. Brain Pathol 26:581–592

    Article  PubMed  CAS  Google Scholar 

  • Lee JC et al (2017) Neuroprotection of ischemic preconditioning is mediated by thioredoxin 2 in the hippocampal CA1 region following a subsequent transient cerebral ischemia. Brain Pathol 27:276–291

    Article  PubMed  CAS  Google Scholar 

  • Lin CS, Polsky K, Nadler JV, Crain BJ (1990) Selective neocortical and thalamic cell death in the gerbil after transient ischemia. Neuroscience 35:289–299

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Smith CL, Barone FC, Ellison JA, Lysko PG, Li K, Simpson IA (1999) Astrocytic demise precedes delayed neuronal death in focal ischemic rat brain. Brain Res Mol Brain Res 68:29–41

    Article  PubMed  CAS  Google Scholar 

  • Mabuchi T et al (2000) Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke 31:1735–1743

    Article  PubMed  CAS  Google Scholar 

  • Nakano S, Kogure K, Fujikura H (1990) Ischemia-induced slowly progressive neuronal damage in the rat brain. Neuroscience 38:115–124

    Article  PubMed  CAS  Google Scholar 

  • Ohk TG et al (2012) Neuronal damage using fluoro-jade B histofluorescence and gliosis in the striatum after various durations of transient cerebral ischemia in gerbils. Neurochem Res 37:826–834

    Article  PubMed  CAS  Google Scholar 

  • Ouyang YB, Voloboueva LA, Xu LJ, Giffard RG (2007) Selective dysfunction of hippocampal CA1 astrocytes contributes to delayed neuronal damage after transient forebrain ischemia. J Neurosci 27:4253–4260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park JH et al (2016) Hydroquinone strongly alleviates focal ischemic brain injury via blockage of blood-brain barrier disruption in rats. Toxicol Sci 154:430–441

    Article  CAS  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press/Elsevier, Amsterdam

    Google Scholar 

  • Petito CK, Morgello S, Felix JC, Lesser ML (1990) The two patterns of reactive astrocytosis in postischemic rat brain. J Cereb Blood Flow Metab 10:850–859

    Article  PubMed  CAS  Google Scholar 

  • Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11:491–498

    Article  PubMed  CAS  Google Scholar 

  • Radenovic L, Selakovic V, Olivan S, Calvo AC, Rando A, Janac B, Osta R (2014) Neuroprotective efficiency of tetanus toxin C fragment in model of global cerebral ischemia in Mongolian gerbils. Brain Res Bull 101:37–44

    Article  PubMed  CAS  Google Scholar 

  • Rupalla K, Allegrini PR, Sauer D, Wiessner C (1998) Time course of microglia activation and apoptosis in various brain regions after permanent focal cerebral ischemia in mice. Acta Neuropathol 96:172–178

    Article  PubMed  CAS  Google Scholar 

  • Salter MW, Stevens B (2017) Microglia emerge as central players in brain disease. Nat Med 23:1018–1027

    Article  PubMed  CAS  Google Scholar 

  • Sapkota A et al (2017) Eupatilin exerts neuroprotective effects in mice with transient focal cerebral ischemia by reducing microglial activation. PLoS One 12:e0171479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmued LC, Hopkins KJ (2000) Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res 874:123–130

    Article  PubMed  CAS  Google Scholar 

  • Shimada IS, Borders A, Aronshtam A, Spees JL (2011) Proliferating reactive astrocytes are regulated by Notch-1 in the peri-infarct area after stroke. Stroke 42:3231–3237

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh S, Swarnkar S, Goswami P, Nath C (2011) Astrocytes and microglia: responses to neuropathological conditions. Int J Neurosci 121:589–597

    Article  PubMed  Google Scholar 

  • Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed  Google Scholar 

  • Sugawara T, Chan PH (2003) Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxid Redox Signal 5:597–607

    Article  PubMed  CAS  Google Scholar 

  • Swanson RA, Farrell K, Stein BA (1997) Astrocyte energetics, function, and death under conditions of incomplete ischemia: a mechanism of glial death in the penumbra. Glia 21:142–153

    Article  PubMed  CAS  Google Scholar 

  • Uno H, Matsuyama T, Akita H, Nishimura H, Sugita M (1997) Induction of tumor necrosis factor-alpha in the mouse hippocampus following transient forebrain ischemia. J Cereb Blood Flow Metab 17:491–499

    Article  PubMed  CAS  Google Scholar 

  • Wang LM, Yan Y, Zou LJ, Jing NH, Xu ZY (2005) Moderate hypothermia prevents neural cell apoptosis following spinal cord ischemia in rabbits. Cell Res 15:387–393

    Article  PubMed  CAS  Google Scholar 

  • Wu LJ, Stevens B, Duan S, MacVicar BA (2013) Microglia in neuronal circuits. Neural Plast 2013:586426

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu DK et al (2012) Neuronal damage in hippocampal subregions induced by various durations of transient cerebral ischemia in gerbils using Fluoro-Jade B histofluorescence. Brain Res 1437:50–57

    Article  PubMed  CAS  Google Scholar 

  • Zhang H et al (2017) Sac-1004, a vascular leakage blocker, reduces cerebral ischemia-reperfusion injury by suppressing blood-brain barrier disruption and inflammation. J Neuroinflammation 14:122

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao H et al (2013) MiRNA-424 protects against permanent focal cerebral ischemia injury in mice involving suppressing microglia activation. Stroke 44:1706–1713

    Article  PubMed  CAS  Google Scholar 

  • Zhao XY et al (2015) Effect of arginine vasopressin on the cortex edema in the ischemic stroke of Mongolian gerbils. Neuropeptides 51:55–62

    Article  PubMed  CAS  Google Scholar 

  • Zille M, Farr TD, Przesdzing I, Muller J, Sommer C, Dirnagl U, Wunder A (2012) Visualizing cell death in experimental focal cerebral ischemia: promises, problems, and perspectives. J Cereb Blood Flow Metab 32:213–231

    Article  PubMed  Google Scholar 

  • Zini I, Grimaldi R, Pich EM, Zoli M, Fuxe K, Agnati LF (1990) Aspects of neural plasticity in the central nervous system-V. Studies on a model of transient forebrain ischemia in male Sprague-Dawley rats. Neurochem Int 16:451–468

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Bio-Synergy Research Project (NRF-2015M3A9C4076322) of the Ministry of Science, ICT and Future Planning through the National Research Foundation (NRF) of Korea, Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03030161) and by Basic Science Research Program through the NRF of Korea funded by the Ministry of Science, ICT &Future Planning (NRF-2017R1A2B4008403).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Moo-Ho Won or Il Jun Kang.

Ethics declarations

Conflict of interest

All authors state that there is no conflict of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.H., Cho, J.H., Ahn, J.H. et al. Neuronal loss and gliosis in the rat striatum subjected to 15 and 30 minutes of middle cerebral artery occlusion. Metab Brain Dis 33, 775–784 (2018). https://doi.org/10.1007/s11011-018-0192-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-018-0192-8

Keywords

Navigation