Skip to main content
Log in

Comparative Study of Functional Changes in Heart Mitochondria in Two Modes of Epinephrine Exposure Modeling Myocardial Injury in Rats

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

The parameters of coupled respiration and transport of calcium ions in mitochondria isolated from the heart of rats were studied in two modes of exposure to epinephrine for modelling myocardial damage. In 24 h after injection of 1.5 mg/kg epinephrine to rats, we observed a decrease in the efficiency of oxidative phosphorylation in heart mitochondria in the presence of both NADH- and FADH-dependent respiratory substrates. Increasing the epinephrine dose and exposure (2 mg/kg, 72 h) led to a more pronounced decrease in the ADP/O coefficient when succinate was used as a substrate, which indicated a predominant decrease in the activity of complex II of the respiratory chain. The injection of epinephrine in the two modes resulted in a decrease in the rate of calcium entry in rat heart mitochondria, but had no effect on mitochondrial calcium retention capacity, which reflects the resistance of the organelles to the induction of the Са2+-dependent pore. These findings suggest that both cardiomyopathy models in rats can be used to study the effectiveness of pharmacological therapy using mitochondria-targeted agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blagova OV, Nedostup AV. Classification of non-coronary heart diseases. Point of view. Ross. Kardiol. Zh. 2017;22(2):7-21. doi: 10.15829/1560-4071-2017-2-7-21. Russian.

  2. Gatiyatullin I, Bazekin G, Chudov I. Morfofunctional assessment of a myocardium of WISTAR line rats when using glycyrrhizic acid. Vestn. Bashkir. Gos. Agrar. Univer. 2018;(2):66-71. doi: 10.31563/1684-7628-2018-46-2-66-71. Russian.

  3. Krylova IB, Bulion VV, Selina EN, Mironova GD, Sapronov NS. Effect of uridine on energy metabolism, LPO, and antioxidant system in the myocardium under conditions of acute coronary insufficiency. Bull. Exp. Biol. Med. 2012;153(5):644-646. doi: https://doi.org/10.1007/s10517-012-1787-4

    Article  CAS  PubMed  Google Scholar 

  4. Leonteva IV, Nikolaeva EA. Mitochondrial cardiomyopathies. Ross. Vestn. Perinatol. Pediatr. 2016;61(3):22-30. doi: 10.21508/1027-4065-2016-61-3-22-30. Russian.

  5. Belosludtsev KN, Dubinin MV, Talanov EY, Starinets VS, Tenkov KS, Zakharova NM, Belosludtseva NV. Transport of Ca2+ and Ca2+-dependent permeability transition in the liver and heart mitochondria of rats with different tolerance to acute hypoxia. Biomolecules. 2020;10(1):114. doi: https://doi.org/10.3390/biom10010114

    Article  CAS  PubMed Central  Google Scholar 

  6. Belosludtsev KN, Talanov EY, Starinets VS, Agafonov AV, Dubinin MV, Belosludtseva NV. Transport of Ca2+ and Ca2+- dependent permeability transition in rat liver mitochondria under the streptozotocin-induced type I diabetes. Cells. 2019;8(9):1014. doi: https://doi.org/10.3390/cells8091014

    Article  CAS  PubMed Central  Google Scholar 

  7. Dhalla NS, Dent MR, Arneja AS. Pathogenesis of catecholamine- induced cardiomyopathy. Cardiovascular Toxicology. Acosta D, ed. New York, 2008. P. 207-262.

  8. Du J, Wang Y, Hunter R, Wei Y, Blumenthal R, Falke C, Khairova R, Zhou R, Yuan P, Machado-Vieira R, McEwen BS, Manji HK. Dynamic regulation of mitochondrial function by glucocorticoids. Proc. Natl Acad. Sci. USA. 2009;106(9):3543-3548. doi: https://doi.org/10.1073/pnas.0812671106

    Article  PubMed  PubMed Central  Google Scholar 

  9. El-Marasy SA, El Awdan SA, Hassan A, Abdallah HMI. Cardioprotective effect of thymol against adrenaline-induced myocardial injury in rats. Heliyon. 2020;6(7):e04431. doi: https://doi.org/10.1016/j.heliyon.2020.e04431

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kondrashova M, Zakharchenko M, Khunderyakova N. Preservation of the in vivo state of mitochondrial network for ex vivo physiological study of mitochondria. Int. J. Biochem. Cell Biol. 2009;41(10):2036-2050. doi: https://doi.org/10.1016/j.biocel.2009.04.020

    Article  CAS  PubMed  Google Scholar 

  11. Krestinina O, Baburina Y, Krestinin R, Odinokova I, Fadeeva I, Sotnikova L. Astaxanthin prevents mitochondrial impairment induced by isoproterenol in isolated rat heart mitochondria. Antioxidants (Basel). 2020;9(3):262. doi: https://doi.org/10.3390/antiox9030262

    Article  CAS  PubMed Central  Google Scholar 

  12. Maron BJ, Ommen SR, Semsarian C, Spirito P, Olivotto I, Maron MS. Hypertrophic cardiomyopathy: present and future, with translation into contemporary cardiovascular medicine. J. Am. Coll. Cardiol. 2014;64(1):83-99. doi: https://doi.org/10.1016/j.jacc.2014.05.003

    Article  PubMed  Google Scholar 

  13. Radaković M, Borozan S, Djelić N, Ivanović S, Miladinović DĆ, Ristanić M, Spremo-Potparević B, Stanimirović Z. Nitrosooxidative stress, acute phase response, and cytogenetic damage in Wistar rats treated with adrenaline. Oxid. Med. Cell. Longev. 2018;2018:1805354. doi: https://doi.org/10.1155/2018/1805354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sisakian H. Cardiomyopathies: evolution of pathogenesis concepts and potential for new therapies. World J. Cardiol. 2014;6(6):478-494. doi: https://doi.org/10.4330/wjc.v6.i6.478

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zaglia T, Ceriotti P, Campo A, Borile G, Armani A, Carullo P, Prando V, Coppini R, Vida V, Stølen T.O, Ulrik W, Cerbai E, Stellin G, Faggian G, De Stefani D, Sandri M, Rizzuto R, Di Lisa F, Pozzan T, Catalucci D, Mongillo M. Content of mitochondrial calcium uniporter (MCU) in cardiomyocytes is regulated by microRNA-1 in physiologic and pathologic hypertrophy. Proc. Natl Acad. Sci. USA. 2017;114(43):E9006-E9015. doi: https://doi.org/10.1073/pnas.1708772114

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Belosludtseva.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 171, No. 6, pp. 714-719, June, 2021

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belosludtseva, N.V., Kireeva, T.A., Belosludtsev, K.N. et al. Comparative Study of Functional Changes in Heart Mitochondria in Two Modes of Epinephrine Exposure Modeling Myocardial Injury in Rats. Bull Exp Biol Med 171, 727–731 (2021). https://doi.org/10.1007/s10517-021-05304-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-021-05304-2

Key Words

Navigation