Skip to main content

Mitochondrial Bioenergetics During Ischemia and Reperfusion

  • Chapter
  • First Online:
Mitochondrial Dynamics in Cardiovascular Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 982))

Abstract

During ischemia and reperfusion (I/R) mitochondria suffer a deficiency to supply the cardiomyocyte with chemical energy, but also contribute to the cytosolic ionic alterations especially of Ca2+. Their free calcium concentration ([Ca2+]m) mainly depends on mitochondrial entrance through the uniporter (UCam) and extrusion in exchange with Na+ (mNCX) driven by the electrochemical gradient (ΔΨm). Cardiac energetic is frequently estimated by the oxygen consumption, which determines metabolism coupled to ATP production and to the maintaining of ΔΨm. Nevertheless, a better estimation of heart energy consumption is the total heat release associated to ATP hydrolysis, metabolism, and binding reactions, which is measurable either in the presence or the absence of oxygenation or perfusion. Consequently, a mechano-calorimetrical approach on isolated hearts gives a tool to evaluate muscle economy. The mitochondrial role during I/R depends on the injury degree. We investigated the role of the mitochondrial Ca2+ transporters in the energetic of hearts stunned by a model of no-flow I/R in rat hearts. This chapter explores an integrated view of previous and new results which give evidences to the mitochondrial role in cardiac stunning by ischemia o hypoxia, and the influence of thyroid alterations and cardioprotective strategies, such as cardioplegic solutions (high K-low Ca, pyruvate) and the phytoestrogen genistein in both sex. Rat ventricles were perfused in a flow-calorimeter at either 30 °C or 37 °C to continuously measure the left ventricular pressure (LVP) and total heat rate (Ht). A pharmacological treatment was done before exposing to no-flow I and R. The post-ischemic contractile (PICR as %) and energetical (Ht) recovery and muscle economy (Eco: P/Ht) were determined during stunning. The functional interaction between mitochondria (Mit) and sarcoplasmic reticulum (SR) was evaluated with selective mitochondrial inhibitors in hearts reperfused with Krebs-10 mM caffeine-36 mM Na+. The caffeine induced contracture (CIC) was due to SR Ca2+ release, while relaxation mainly depends on mitochondrial Ca2+ uptake since neither SL-NCX nor SERCA are functional under this media. The ratio of area-under-curves over ischemic values (AUC-ΔHt/AUC-ΔLVP) estimates the energetical consumption (EC) to maintain CIC. Relaxation of CIC was accelerated by inhibition of mNCX or by adding the aerobic substrate pyruvate, while both increased EC. Contrarily, relaxation was slowed by cardioplegia (high K-low Ca Krebs) and by inhibition of UCam. Thus, Mit regulate the cytosolic [Ca2+] and SR Ca2+ content. Both, hyperthyroidism (HpT) and hypothyroidism (HypoT) reduced the peak of CIC but increased EC, in spite of improving PICR. Both, CIC and PICR in HpT were also sensitive to inhibition of mNCX or UCam, suggesting that Mit contribute to regulate the SR store and Ca2+ release. The interaction between mitochondria and SR and the energetic consequences were also analyzed for the effects of genistein in hearts exposed to I/R, and for the hypoxia/reoxygenation process. Our results give evidence about the mitochondrial regulation of both PICR and energetic consumption during stunning, through the Ca2+ movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Csordás G, Renken C, Várnai P, Walter L, Weaver D, Buttle KF, Balla T, Mannella CA, Hajnóczky G. Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol. 2006;174:915–21.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Griffiths EJ. Mitochondrial calcium transport in the heart: physiological and pathological roles. J Mol Cell Cardiol. 2009;46:789–803.

    Article  CAS  PubMed  Google Scholar 

  3. Ruiz-Meana M, Abellán A, Miró-Casas E, Agulló E, García-Dorado D. Role of sarcoplasmic reticulum in mitochondrial permeability transtion and cardiomyocyte death during reperfusion. Am J Physiol Heart Circ Physiol. 2009;297:H1281–9.

    Article  CAS  PubMed  Google Scholar 

  4. Guzun R, Kaambre T, Bagur R, Grichine A, Usson Y, Varikmaa M, Anmann T, Tepp K, Timohhina N, Shevchuk I, Chekulayev V, Boucher F, Dos Santos P, Schlattner U, Wallimann T, Kuznetsov AV, Dzeja P, Aliev M, Saks V. Modular organization of cardiac energy metabolism: energy conversion, transfer and feedback regulation. Acta Physiol (Oxford). 2015;213:84–106.

    Article  CAS  Google Scholar 

  5. Gibbs CL, Loiselle DL. The energy output of tetanized cardiac muscle: species differences. Pflugers Arch. 1978;373:31–8.

    Article  CAS  PubMed  Google Scholar 

  6. Mulieri LA, Alpert NR. Activation heat and latency relaxation in relation to calcium movement in skeletal and cardiac muscle. Can J Physiol Pharmacol. 1982;60:529–41.

    Article  CAS  PubMed  Google Scholar 

  7. Ponce-Hornos JE, Ricchiuti NV, Langer GA. On-line calorimetry in the arterially perfused rabbit intraventricular septum. Am J Phys. 1982;243:H289–95.

    CAS  Google Scholar 

  8. Loiselle DS. Cardiac basal and activation metabolism. Basic Res Cardiol. 1987;82:37–50.

    PubMed  Google Scholar 

  9. Gibbs CL, Loiselle DL, Wendt IR. Activation heat in rabbit cardiac muscle. J Physiol Lond. 1988;395:115–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Holubarsch C, Hasenfuss G, Just H, Alpert NR. Positive inotropism and myocardial energetic: influence of beta receptor agonist stimulation, phosphodiesterase inhibition, and ouabain. Cardiovasc Res. 1994;28:994–1002.

    Article  CAS  PubMed  Google Scholar 

  11. Ponce-Hornos JE, Bonazzola P, Marengo FD, Consolini AE, Márquez MT. Tension-dependent and tension-independent energy components of heart contraction. Pflügers Arch Eur J Physiol. 1995;429:841–51.

    Article  CAS  Google Scholar 

  12. Ponce-Hornos JE, Taquini AC. Calcium effects on contractility and heat production in mammalian myocardium. Am J Phys. 1986;251:H127–32.

    CAS  Google Scholar 

  13. Ponce-Hornos JE, Marquez MT, Bonazzola P. Influence of extracellular potassium on energetics of resting heart muscle. Am J Phys. 1992;262:H1081–7.

    CAS  Google Scholar 

  14. Consolini AE, Márquez MT, Ponce-Hornos JE. Energetics of heart muscle contraction under high K+ perfusion: verapamil and Ca+2 effects. Am J Phys. 1997;273:H2343–50.

    CAS  Google Scholar 

  15. Arruda AP, Da-Silva WS, Carvalho DP, De Meis L. Hyperthyroidism increases the uncoupled ATPase activity and heat production by the sarcoplasmic reticulum Ca2+-ATPase. Biochem J. 2003;375:753–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kiriazis H, Gibbs CL. Effects of aging on the work output and efficiency of rat papillary muscle. Cardiovasc Res. 2000;48:111–9.

    Article  CAS  PubMed  Google Scholar 

  17. Han J-C, Taberner AJ, Kirton RS, Nielsen PM, Smith NP, Loiselle DS. A unique micromechanocalorimeter for simultaneous measurement of heat rate and force production of cardiac trabeculae carneae. J Appl Physiol. 2009;107:946–51.

    Article  PubMed  Google Scholar 

  18. Han JC, Tran K, Nielsen PM, Taberner AJ, Loiselle DS. Streptozotocin-induced diabetes prolongs twitch duration without affecting the energetic of isolated ventricular trabeculae. Cardiovasc Diabetol. 2014;13:79.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Consolini AE, Márquez MT, Ponce-Hornos JE. A comparison no-flow and low flow ischemia in the rat heart: an energetic study. Can J Physiol Pharmacol. 2001;79:551–8.

    Article  CAS  PubMed  Google Scholar 

  20. Consolini AE, Ragone MI, Conforti P, Volonté MG. Mitochondrial role in ischemia-reperfusion of rat hearts exposed to high-K+ cardioplegia and clonazepam: energetic and contractile consequences. Can J Physiol Pharmacol. 2007;85:483–96.

    Article  CAS  PubMed  Google Scholar 

  21. Consolini AE, Bonazzola P. Energetics of Ca2+ homeostasis during ischemia-reperfusion on neonatal rat hearts under high-[K+] cardioplegia. Can J Physiol Pharmacol. 2008;86:866–79.

    Article  CAS  PubMed  Google Scholar 

  22. Consolini AE, Ragone MI, Bonazzola P. Mitochondrial and cytosolic calcium in rat hearts under high-K(+) cardioplegia and pyruvate: mechano-energetic performance. Can J Physiol Pharmacol. 2011;89:485–96.

    Article  CAS  PubMed  Google Scholar 

  23. Ragone MI, Consolini AE. Role of the mitochondrial Ca2+ transporters in the high-[K+](o) cardioprotection of rat hearts under ischemia and reperfusion: a mechano-energetic study. J Cardiovasc Pharmacol. 2009;54:213–22.

    Article  CAS  PubMed  Google Scholar 

  24. Ragone MI, Torres NS, Consolini AE. Energetic study of cardioplegic hearts under ischaemia/reperfusion and [Ca(2+)] changes in cardiomyocytes of guinea-pig: mitochondrial role. Acta Physiol. 2013;207:369–85.

    Article  CAS  Google Scholar 

  25. Ragone MI, Bonazzola P, Colareda GA, Consolini AE. Cardioprotective effect of hyperthyroidism on the stunned rat heart during ischaemia-reperfusion: energetics and role of mitochondria. Exp Physiol. 2015;100(6):680–97.

    Article  CAS  PubMed  Google Scholar 

  26. Colareda G, Ragone MI, Consolini AE. Sex differences in the mechano-energetic effects of genistein on stunned rat and guinea pig hearts. Clin Exp Pharmacol Physiol. 2016;43:102–15.

    Article  CAS  PubMed  Google Scholar 

  27. Gunter TE, Buntinas L, Sparagna G, Eliseev R, Gunter K. Mitochondrial calcium transport: mechanisms and functions. Cell Calcium. 2000;28:285–96.

    Article  CAS  PubMed  Google Scholar 

  28. Liu T, O’Rourke B. Enhancing mitochondrial Ca2+ uptake in myocytes from failing hearts restores energy supply and demand matching. Circ Res. 2008;103:279–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dedkova EN, Seidlmayer LK, Blatter LA. Mitochondria-mediated cardioprotection by trimetazidine in rabbit heart failure. J Mol Cell Cardiol. 2013;59:41–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maack C, Cortassa S, Aon MA, Ganesan AN, Liu T, O’Rourke B. Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes. Circ Res. 2006;99:172–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu T, Brown DA, O’Rourke B. Role of mitochondrial dysfunction in cardiac glycoside toxicity. J Mol Cell Cardiol. 2010;49:728–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Santulli G, Marks AR. Essential roles of intracellular calcium release channels in muscle, brain, metabolism, and aging. Curr Mol Pharmacol. 2015;8:206–22.

    Article  CAS  PubMed  Google Scholar 

  33. Ruiz-Meana M, Fernandez-Sanz C, Garcia-Dorado D. The SR-mitochondria interaction: a new player in cardiac pathophysiology. Cardiovasc Res. 2010;88:30–9.

    Article  CAS  PubMed  Google Scholar 

  34. Tani M, Neely JR. Intermittent perfusion of ischemic myocardium. Possible mechanisms of protective effects on mechanical function in isolated rat heart. Circulation. 1990;82:536–48.

    Article  CAS  PubMed  Google Scholar 

  35. Schafer C, Ladilov Y, Inserte J, Schafer M, Haffner S, García-Dorado D, Piper HM. Role of the reverse mode of the Na+/Ca2+ exchanger in reoxygenation induced cardiomyocyte injury. Cardiovasc Res. 2001;51:241–50.

    Article  CAS  PubMed  Google Scholar 

  36. Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev. 2008;88:581–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Perrelli MG, Tullio F, Angotti C, Cerra MC, Angelone T, Tota B, Alloatti G, Penna C, Pagliaro P. Catestatin reduces myocardial ischaemia/reperfusion injury: involvement of PI3K/Akt, PKCs, mitochondrial KATP channels and ROS signalling. Pflugers Arch. 2013;465:1031–40.

    Article  CAS  PubMed  Google Scholar 

  38. Cox DA, Matlib MA. Modulation of intramitochondrial free Ca2+ concentration by antagonists of Na/Ca exchange. Trends Pharmacol Sci. 1993;14:408–13.

    Article  CAS  PubMed  Google Scholar 

  39. Nishida S, Satoh H. Possible involvement of Ca activated K channels, SK channel, in the quercetin-induced vasodilatation. Korean J Physiol Pharmacol. 2009;13:361–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. O’Rourke B, Blatter LA. Mitochondrial Ca+2 uptake: tortoise or hare? J Mol Cell Cardiol. 2009;46:767–74.

    Article  PubMed  Google Scholar 

  41. Paillard M, Tubbs E, Thiebaut PA, Gomez L, Fauconnier J, Da Silva CC, Teixeira G, Mewton N, Belaidi E, Durand A, Abrial M, Lacampagne A, Rieusset J, Ovize M. Depressing mitochondria-reticulum interactions protects cardiomyocytes from lethal hypoxia-reoxygenation injury. Circulation. 2013;128:1555–65.

    Article  CAS  PubMed  Google Scholar 

  42. Takeuchi A, Kim B, Matsuoka S. The mitochondrial Na+-Ca2+ exchanger, NCLX, regulates automaticity of HL-1 cardiomyocytes. Sci Rep. 2013;3:2766.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Santulli G, Xie W, Reiken SR, Marks AR. Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci USA. 2015;112:11389–94.

    Google Scholar 

  44. Sinha D, D’Silva P. Chaperoning mitochondrial permeability transition: regulation of transition pore complex by a J-protein, DnaJC15. Cell Death Dis. 2014;6(5):e1101.

    Article  Google Scholar 

  45. Márquez MT, Consolini AE, Bonazzola P, Ponce-Hornos JE. The energetics of the quiescent heart muscle: high potassium cardioplegic solution and the influence of calcium and hypoxia on the rat heart. Acta Physiol Scand. 1997;160:229–33.

    Article  PubMed  Google Scholar 

  46. Valverde CA, Kornyeyev D, Ferreiro M, Petrosky AD, Mattiazzi A, Escobar AL. Transient Ca2+ depletion of the sarcoplasmic reticulum at the onset of reperfusion. Cardiovasc Res. 2010;85:671–80.

    Article  CAS  PubMed  Google Scholar 

  47. Santo-Domingo J, Vay L, Hernández-Sanmiguel E, Lobatón CD, Moreno A, Montero M, Alvarez J. The plasma membrane Na+/Ca2+ exchange inhibitor KBR7943 is also a potent inhibitor of the mitochondrial Ca2+ uniporter. Br J Pharmacol. 2007;151:647–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ouardouz M, Zamponi GW, Barr W, Kiedrowski L, Stys PK. Protection of ischemic rat spinal cord white matter: Dual action of KB-R7943 on Na+/Ca2+ exchange and L-type Ca2+ channels. Neuropharmacology. 2005;48:566–75.

    Article  CAS  PubMed  Google Scholar 

  49. Bünger R, Mallet RT, Hartman DA. Pyruvate-enhanced phosphorylation potential and inotropism in normoxic and postischemic isolated working heart. Near-complete prevention of reperfusion contractile failure. Eur J Biochem. 1989;180:221–33.

    Article  PubMed  Google Scholar 

  50. Zweier JL, Jacobus WE. Substrate-induced alterations of high energy phosphate metabolism and contractile function in the perfused heart. J Biol Chem. 1987;262:8015–21.

    CAS  PubMed  Google Scholar 

  51. Martin BJ, Valdivia HH, Bünger R, Lasley RD, Mentzer Jr RM. Pyruvate augments calcium transients and cell shortening in rat ventricular myocytes. Am J Phys. 1998;274:H8–17.

    CAS  Google Scholar 

  52. Zima AV, Kockskämper J, Mejia-Alvarez R, Blatter LA. Pyruvate modulates cardiac sarcoplasmic reticulum Ca2+ release in rats via mitochondria-dependent and -independent mechanisms. J Physiol. 2003;550:765–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Torres CA, Varian KD, Canan CH, Davis JP, Janssen PM. The positive inotropic effect of pyruvate involves an increase in myofilament calcium sensitivity. PLoS One. 2013;8:e63608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bonazzola P, Ragone MI, Consolini AC. Effects of pyruvate on the energetics of rat ventricles stunned by ischemia-reperfusion. Can J Physiol Pharmacol. 2014;92:386–98.

    Article  CAS  PubMed  Google Scholar 

  55. Halestrap AP, Price NT. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J. 1999;2:281–99.

    Article  Google Scholar 

  56. Kockskämper J, Zima AV, Blatter LA. Modulation of sarcoplasmic reticulum Ca2+ release by glycolysis in cat atrial myocytes. J Physiol. 2005;564:697–714.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Toller W, Wölkart G, Stranz C, Metzler H, Brunner F. Contractile action of levosimendan and epinephrine during acidosis. Eur J Pharmacol. 2005;507:199–209.

    Article  CAS  PubMed  Google Scholar 

  58. Terracciano CM, MacLeod KT. Effects of acidosis on Na+/Ca2+ exchange and consequences for relaxation in guinea pig cardiac myocytes. Am J Phys. 1994;267:H477–87.

    CAS  Google Scholar 

  59. Deodato B, Altavilla D, Squadrito G, Campo GM, Arlotta M, Minutoli L. Cardioprotection by the phytoestrogen genistein in experimental myocardial ischemia-reperfusion injury. Br J Pharmacol. 1999;128:1683–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tissier R, Waintraub X, Couvreur N, Gervais M, Bruneval P, Mandet C, Zini R, Enriquez B, Berdeaux A, Ghaleh B. Pharmacological postconditioning with the phytoestrogen genistein. J Mol Cell Cardiol. 2007;42:79–87.

    Article  CAS  PubMed  Google Scholar 

  61. Ji E, Wang C, He R. Effects of genistein on intracellular free-calcium concentration in guinea pig ventricular myocytes. Acta Physiol Sin. 2004;56:204–9.

    CAS  Google Scholar 

  62. Belevych AE, Warrier AS, Harvey RD. Genistein inhibits cardiac L-type Ca2+ channel activity by a tyrosine kinase-independent mechanism. Mol Pharmacol. 2002;62:554–65.

    Article  CAS  PubMed  Google Scholar 

  63. Li H, Zhang Y, Tian Z, Qiu X, Gu J, Wu J. Genistein stimulates myocardial contractility in guinea pigs by different subcellular mechanisms. Eur J Pharmacol. 2008;597:70–4.

    Article  CAS  PubMed  Google Scholar 

  64. Liew R, Stagg MA, Chan J, Collins P, MacLeod KT. Gender determines the acute actions of genistein on intracellular calcium regulation in the guinea pig heart. Cardiovasc Res. 2004;61:66–76.

    Article  CAS  PubMed  Google Scholar 

  65. Van Wylen DG. Effect of ischemic preconditioning on interstitial purine metabolite and lactate accumulation during myocardial ischemia. Circulation. 1994;89:2283–9.

    Article  PubMed  Google Scholar 

  66. Clanachan AS. Contribution of protons to post-ischemic Na+ and Ca2+ overload and left ventricular mechanical dysfunction. J Cardiovasc Electrophysiol. 2006;17:s141–8.

    Article  PubMed  Google Scholar 

  67. Stowe D, Camara KS. Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal. 2009;11:1373–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zima AV, Blatter LA. Redox regulation of cardiac calcium channels and transporters. Cardiovasc Res. 2006;71:310–21.

    Article  CAS  PubMed  Google Scholar 

  69. Hidalgo C, Donoso P. Cross-talk between calcium and redox signalling: from molecular mechanisms to health implications. Antioxid Redox Signal. 2008;10:1275–312.

    Article  CAS  PubMed  Google Scholar 

  70. Tang WH, Kravtsov GM, Sauert M, Tong XY, Hou XY, Wong TM, Chung SK, Man Chung SS. Polyol pathway impairs the function of SERCA and RyR in ischemic–reperfused rat hearts by increasing oxidative modifications of these proteins. J Mol Cell Cardiol. 2010;49:58–69.

    Article  CAS  PubMed  Google Scholar 

  71. Kuster GM, Lancel S, Zhang J, Communal C, Trucillo MP, Lim CC, Pfister O, Weinberg EO, Cohen RA, Liao R, Siwik DA, Colucci WS. Redox mediated reciprocal regulation of SERCA and Na+–Ca2+ exchanger contributes to sarcoplasmic reticulum Ca2+ depletion in cardiac myocytes. Free Radic Biol Med. 2010;48:1182–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Grützner A, Garcia-Manyes S, Kötter S, Badilla CL, Fernandez JM, Linke WA. Modulation of titin-based stiffness by disulfide bonding in the cardiac titin N2-B unique sequence. Biophys J. 2009;97:825–34.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Crompton M. The role of Ca+2 in the function and dysfunction of heart mitochondria. In: Langer GA, editor. Calcium and the heart. New York: Raven Press Ltd.; 1990. p. 167–98.

    Google Scholar 

  74. Finkel T, Menazza S, Holmström KM, Parks RJ, Liu J, Sun J, Liu J, Pan X, Murphy E. The ins and outs of mitochondrial calcium. Circ Res. 2015;116:1810–9.

    Article  CAS  PubMed  Google Scholar 

  75. Santulli G, Lewis DR, Marks AR. Physiology and pathophysiology of excitation–contraction coupling: the functional role of ryanodine receptor. J Muscle Res Cell Motil. 2017 (in press); doi: 10.1007/s10974-017-9470-z.

  76. Santulli G, Nakashima R, Yuan Q, Marks AR. Intracellular calcium release channels: an update. J Physiol. 2017 (in press); doi: 10.1113/JP272781.

  77. Ristagno G, Tantillo S, Sun S, Harry Weil M, Tang W. Hypothermia improves ventricular myocyte contractility under conditions of normal perfusion and after an interval of ischemia. Resuscitation. 2010;81:898–903.

    Article  PubMed  Google Scholar 

  78. Curtin N, Woledge R. Energy changes and muscular contraction. Physiol Rev. 1978;58:690–761.

    CAS  PubMed  Google Scholar 

  79. Ponce-Hornos JE, Parker JM, Langer GA. Heat production in isolated heart myocytes: differences among species. Am J Phys. 1990;258:H880–6.

    CAS  Google Scholar 

  80. Arieli Y, Gursahani H, Eaton MM, Hernandez LA, Schaefer S. Gender modulation of Ca(2+) uptake in cardiac mitochondria. J Mol Cell Cardiol. 2004;37:507–13.

    Article  CAS  PubMed  Google Scholar 

  81. Nyirenda MJ, Clark DN, Finlayson AR. Thyroid disease and increased cardiovascular risk. Thyroid. 2005;15:718–24.

    Article  PubMed  Google Scholar 

  82. Klein I, Ojamaa K. Thyroid hormone and the cardiovascular system. N Engl J Med. 2001;44:501–9.

    Google Scholar 

  83. Heusch G. The regional myocardial flow-function relationship: a framework for an understanding of acute ischemia, hibernation, stunning and coronary microembolization. 1980. Circ Res. 2013;112:1535–7.

    Article  CAS  PubMed  Google Scholar 

  84. Siribaddana S. Cardiac dysfunction in the CABG patient. Curr Opin Pharmacol. 2012;12:166–71.

    Article  CAS  PubMed  Google Scholar 

  85. Novitzky D, Cooper DKC. Thyroid hormone and the stunned myocardium. J Endocrinol. 2014;223:R1–8.

    Article  CAS  PubMed  Google Scholar 

  86. Trollinger DE, Wayne E, Lemasters J. Selective loading of Rhod 2 into mitochondria shows mitochondrial Ca2+ transients during the contractile cycle in adult rabbit cardiac myocytes. Biochem Biophys Res Commun. 1997;236:738–42.

    Article  CAS  PubMed  Google Scholar 

  87. Griffiths EJ, Halestrap AP. Protection by Cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol. 1993;25:1461–9.

    Article  CAS  PubMed  Google Scholar 

  88. Murata M, Akao M, O’Rourke B, Marban E. Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca2+ overload during simulated ischemia and reperfusion. Possible mechanism of cardioprotection. Circ Res. 2001;89:891–8.

    Article  CAS  PubMed  Google Scholar 

  89. Garlid KD, Costa ADT, Quinlan CL, Pierre SV, Dos Santos P. Cardioprotective signaling to mitochondria. J Mol Cell Cardiol. 2009;46:858–66.

    Article  CAS  PubMed  Google Scholar 

  90. García-Rivas GJ, Guerrero-Hernández A, Guerrero-Serna G, Rodríguez-Zavala JS, Zazueta C. Inhibition of the mitochondrial calcium uniporter by the oxo-bridged dinuclear ruthenium amine complex (Ru 360) prevents from irreversible injury in postischemic rat heart. FEBS J. 2005;272:3477–88.

    Article  Google Scholar 

  91. Foskett JK, Philipson B. The mitochondrial Ca2+ uniporter complex. J Mol Cell Cardiol. 2015;78:3–8.

    Article  CAS  PubMed  Google Scholar 

  92. Ruiz-Meana M, Garcia-Dorado D, Miró-Casas E, Abellán A, Soler-Soler J. Mitochondrial Ca2+ uptake during simulated ischemia does not affect permeability transition pore opening upon simulated reperfusion. Cardiovasc Res. 2006;71:715–24.

    Article  CAS  PubMed  Google Scholar 

  93. Xie C, Kauffman J, Akar FG. Functional crosstalk between the mitochondrial PTP and KATP channels determine arrhythmic vulnerability to oxidative stress. Front Physiol. 2014;5:264.

    PubMed  PubMed Central  Google Scholar 

  94. Nicolini G, Pitto L, Kusmic C, Balzan S, Sabatino L, Iervasi G, Forini F. New insights into mechanisms of cardioprotection mediated by thyroid hormones. J Thyroid Res. 2013;2013:264387. doi: 10.1155/2013/264387. Epub 2013 Mar 10.

  95. Cernohorsky J, Kolar F, Pelouch V, Korecky B, Vetter R. Thyroid control of sarcolemmal Na+/Ca2+ exchanger and SR Ca2+ATPase in developing rat heart. Am J Phys. 1998;275:H264–73.

    CAS  Google Scholar 

  96. Kenessey A, Ojamaa K. Thyroid hormone stimulates protein synthesis in the cardiomyocyte by activating the Akt-mTOR and p70S6K pathways. J Biol Chem. 2006;281:20666–72.

    Article  CAS  PubMed  Google Scholar 

  97. Klein I, Danzi S. Thyroid disease and the heart. Circulation. 2007;116:1725–35.

    Article  PubMed  Google Scholar 

  98. Arsanjani R, McCarren M, Bahl JJ, Goldman S. Translational potential of thyroid hormone and its analogs. J Mol Cell Cardiol. 2011;51:506–11.

    Article  CAS  PubMed  Google Scholar 

  99. Forini F, Lionetti V, Ardehali H, Pucci A, Cecchetti F, Ghanefar M, Nicolini G, Ichikawa Y, Nannipieri M, Recchia FA, Iervasi G. Early long-term LT3 replacement rescues mitochondria and prevents ischemic cardiac remodeling in rats. J Cell Mol Med. 2011;15:514–24.

    Article  CAS  PubMed  Google Scholar 

  100. Kiss E, Jakab G, Kranias EG, Edes I. Thyroid hormone induced alterations in phospholamban protein expression: regulatory effects on sarcoplasmic reticulum Ca2+ transport and myocardial relaxation. Circ Res. 1994;75:245–51.

    Article  CAS  PubMed  Google Scholar 

  101. Tielens ET, Forder JR, Chatham JC, Marrelli SP, Ladenson PW. Acute L-triiodothyronine administration potentiates inotropic responses to beta-adrenergic stimulation in the isolated perfused rat heart. Cardiovasc Res. 1996;32:306–10.

    Article  CAS  PubMed  Google Scholar 

  102. Mattiazzi A, Argenziano M, Aguilar-Sanchez Y, Mazzocchi G, Escobar AL. Ca2+ Sparks and Ca2+ waves are the subcellular events underlying Ca2+ overload during ischemia and reperfusion in perfused intact hearts. J Mol Cell Cardiol. 2015;79:69–78.

    Article  CAS  PubMed  Google Scholar 

  103. Mourouzis I, Dimopoulos A, Saranteas T, Tsinarakis N, Livadarou E, Spanou D, Kokkinos AD, Xinaris C, Pantos C, Cokkinos DV. Ischemic preconditioning fails to confer additional protection against ischemia-reperfusion injury in the hypothyroid rat heart. Physiol Res. 2009;58:29–38.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia E. Consolini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Consolini, A.E., Ragone, M.I., Bonazzola, P., Colareda, G.A. (2017). Mitochondrial Bioenergetics During Ischemia and Reperfusion. In: Santulli, G. (eds) Mitochondrial Dynamics in Cardiovascular Medicine. Advances in Experimental Medicine and Biology, vol 982. Springer, Cham. https://doi.org/10.1007/978-3-319-55330-6_8

Download citation

Publish with us

Policies and ethics