Skip to main content

Advertisement

Log in

Neural Stem/Progenitor Cells of Human Olfactory Mucosa for the Treatment of Chronic Spinal Cord Injuries

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied the efficiency of transplantation of neural stem/progenitor cells from human olfactory mucosa in chronic spinal cord injury. Neural stem/progenitor cells were obtained by a protocol modified by us and transplanted to rats with spinal post-traumatic cysts. It was shown that transplantation of neural stem/progenitor cells from human olfactory lining improved motor activity of hind limbs in the recipient rat with spinal post-traumatic cysts (according to BBB scale).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Voronova АD, Stepanova OV, Valikhov MP, Chadin AV, Dvornikov АS, Reshetov IV, Chekhonin VP. Preparation of Human Olfactory Ensheathing Cells for the Therapy of Spinal Cord Injuries. Bull. Exp. Biol. Med. 2018;164(4):523-527. doi: https://doi.org/10.1007/s10517-018-4025-x

    Article  CAS  Google Scholar 

  2. Lebedev SV, Karasev AV, Chekhonin VP, Savchenko EA, Viktorov IV, Chelyshev YA, Shaimardanova GF. Study of the efficiency of transplantation of human neural stem cells to rats with spinal trauma: the use of functional load tests and BBB test. Bull. Exp. Biol. Med. 2010;149(3):377-382.

    Article  CAS  Google Scholar 

  3. Ader M, Schachner M, Bartsch U. Integration and differentiation of neural stem cells after transplantation into the dysmyelinated central nervous system of adult mice. Eur. J. Neurosci. 2004;20(5):1205-1210.

    Article  Google Scholar 

  4. Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma. 1995;12(1):1-21.

    Article  CAS  Google Scholar 

  5. de Oliveira AA, Sánchez JPB, Hurtado JDC. Neural stem cell transplantation and mechanisms for functional recovery. J. Stem Cell Res. Ther. 2016;1(2):59-71. doi:10.15406/ jsrt.2016.01.00012

  6. Iwanami A, Kaneko S, Nakamura M, Kanemura Y, Mori H, Kobayashi S, Yamasaki M, Momoshima S, Ishii H, Ando K, Tanioka Y, Tamaoki N, Nomura T, Toyama Y, Okano H. Transplantation of human neural stem cells for spinal cord injury in primates. J. Neurosci. Res. 2005;80(2):182-190.

    Article  CAS  Google Scholar 

  7. Kocaoglu M, Korucu M, Civlan S, Ozdemir K, Ozdemir M, Cirak B. Stem cell therapy in the treatment of neurological diseases. Brain Disord. Ther. 2014;3(4). ID 1000132. doi:10.4172/2168-975X.1000132

  8. Muniswami DM, Kanakasabapathy I, Tharion G. Globose basal cells for spinal cord regeneration. Neural Regen. Res. 2017;12(11):1895-1904.

    Article  Google Scholar 

  9. Nizzardo M, Simone C, Rizzo F, Ruggieri M, Salani S, Riboldi G, Faravelli I, Zanetta C, Bresolin N, Comi GP, Corti S. Minimally invasive transplantation of iPSC-derived ALDHhiSSCloVLA4+ neural stem cells effectively improves the phenotype of an amyotrophic lateral sclerosis model. Hum. Mol. Genet. 2014;23(2):342-354.

    Article  CAS  Google Scholar 

  10. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255:1707-1710.

    Article  CAS  Google Scholar 

  11. Salazar DL, Uchida N, Hamers FP, Cummings BJ, Anderson AJ. Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NODscid mouse model. PLoS One. 2010;5(8). ID e12272. doi: 10.1371/journal.pone.0012272

  12. Tam RY, Fuehrmann T, Mitrousis N, Shoichet MS. Regenerative therapies for central nervous system diseases: a biomaterials approach. Neuropsychopharmacology. 2014;39(1):169-188.

    Article  CAS  Google Scholar 

  13. Zhang C, Morozova AY, Abakumov MA, Gubsky IL, Douglas P, Feng S, Bryukhovetskiy AS, Chekhonin VP. Precise delivery into chronic spinal cord injury syringomyelic cysts with magnetic nanoparticles MRI visualization. Med. Sci. Monit. 2015;21:3179-3185.

    Article  Google Scholar 

  14. Zhang W, Gu GJ, Shen X, Zhang Q, Wang GM, Wang PJ. Neural stem cell transplantation enhances mitochondrial biogenesis in a transgenic mouse model of Alzheimer’s diseaselike pathology. Neurobiol. Aging. 2015;36(3):1282-1292.

    Article  CAS  Google Scholar 

  15. Zuo FX, Bao XJ, Sun XC, Wu J, Bai QR, Chen G, Li XY, Zhou QY, Yang YF, Shen Q, Wang RZ. Transplantation of human neural stem cells in a Parkinsonian model exerts neuroprotection via regulation of the host microenvironment. Int. J. Mol. Sci. 2015;16(11):26,473-26,492.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Voronova.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 4, pp. 223-226, December, 2019

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronova, A.D., Stepanova, O.V., Valikhov, M.P. et al. Neural Stem/Progenitor Cells of Human Olfactory Mucosa for the Treatment of Chronic Spinal Cord Injuries. Bull Exp Biol Med 168, 538–541 (2020). https://doi.org/10.1007/s10517-020-04749-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-020-04749-1

Key Words

Navigation