Skip to main content

Advertisement

Log in

Biocompatibility and Structural Features of Biodegradable Polymer Scaffolds

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We performed a comparative analysis of physicochemical properties and biocompatibility of scaffolds of different composition on the basis of biodegradable polymers fabricated by casting and electrospinning methods. For production of polyhydroxyalkanoate-based scaffolds by electrospinning method, the optimal concentration of the polymer was 8-10%. Fiber diameter and properties of the scaffold produced by electrospinning method depended on polymer composition. Addition of polycaprolactone increased elasticity of the scaffolds. Bio- and hemocompatibility of the scaffolds largely depended on the composition formulation and method of scaffold fabrication. Polylactide introduced into the composition of polyhydroxybutyrate-oxyvalerate scaffolds accelerated degradation and increased adhesive properties of the scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Bokeriya and R. G. Gudkova, Cardiovascular Surgery – 2011. Diseases and Congenital Abnormalities of the Cardiovascular System [in Russian], Moscow (2012).

  2. A. V. Pokrovskii and V. N. Gontarenko, The State of Vascular Surgery in 2012 [in Russian], Moscow (2013), P. 95.

  3. V. I. Sevast’yanov, S. L. Vasin, and N. V. Petrova, Biocompatibility [in Russian], Ed. V. Yu. Shanin, Moscow (1999), pp. 47-87.

  4. A. B. Shlekhter, Biocompatible Materials [in Russian], Eds. V. I. Sevast’yanov and M. P. Kirpichnikov, Moscow (2011), pp. 130-158.

  5. Y. Asawa, T. Sakamoto, M. Komura, et al., Cell Transplant., 21, No. 7, 1431-1442 (2012).

    Article  PubMed  Google Scholar 

  6. S. Chung, N. P. Ingle, G.A. Montero, et al., Acta Biomater., 6, No. 6, 1958-1967 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. R. M. Delaine-Smith, N. H. Green, S. J. Matcher, et al., PLoS One, 9, No. 2, doi: 10.1371/journal.pone.0089761 (2014).

  8. J. Doorn, S. J. Roberts, J. Hilderink, et al., Tissue Eng.Part A., 19, Nos. 15-16, 1817-1828 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. T. Garg, O. Singh, S. Arora, and R. Murthy, Crit. Rev. Ther. Drug Carrier Syst., 29, No. 1, 1-63 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. N. T. Hiep and B. T. Lee, J. Mater. Sci. Mater. Med., 21, No. 6, 1969-1978 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. G. Jin, M. P. Prabhakaran, and S. Ramakrishna, Acta Biomater., 7, No. 8, 3113-3122 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. A. Khademhosseini, J. P. Vacanti, and R. Langer, Sci. Am., 300, No. 5, 64-71 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. V. Milleret, B. Simona, P. Neuenschwander, and H. Hall, Eur. Cell Mater., 21, 286-303 (2011).

    CAS  PubMed  Google Scholar 

  14. A. Nandakumar, A. Barradas, J. de Boer, L. Moroni, et al., Biomatter., 3, No. 2, e23705 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  15. L. Polo-Corrales, M. Latorre-Esteves, and J. E. Ramirez-Vick, J. Nanosci. Nanotechnol., 14, No. 1, 15-56 (2014).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. M. P. Prabhakaran, L. Ghasemi-Mobarakeh, and S. Ramakrishna, J. Nanosci. Nanotechnol., 11, No. 4, 3039-3057 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. M. S. Shoichet, Macromolecules, No. 43, 581-591 (2010). doi: 591/43/948740 (10.1021).

  18. Y. Tanaka, H. Yamaoka, S. Nishizawa, et al., Biomaterials, 31, No. 16, 4506-4516 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. V. Thomas, T. Donahoe, E. Nyairo, et al., Acta Biomater., 7, No. 5, 2070-2079 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. H. V. Unadkat, M. Hulsman, K. Cornelissen, et al., Proc. Natl Acad. Sci. USA, 108, No. 40, 16,565-16,570 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Nasonova.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 3, pp. 160-166, July, 2015

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasonova, M.V., Glushkova, T.V., Borisov, V.V. et al. Biocompatibility and Structural Features of Biodegradable Polymer Scaffolds. Bull Exp Biol Med 160, 134–140 (2015). https://doi.org/10.1007/s10517-015-3114-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-015-3114-3

Key Words

Navigation