Skip to main content
Log in

A multi-step method to calculate long-term quasi-periodic orbits around the Sun-Earth \(L_{1}\)/\(L_{2}\)

  • Research
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Quasi-periodic orbits around the libration point orbits have attracted significant attention since they can provide more opportunities for space missions. This paper proposes a variable step-size multistep method that can effectively calculate long-term quasi-periodic orbits around the Sun-Earth \(L_{1}\)/\(L_{2}\) in the Sun-Earth-Moon bicircular model. In this method, periodic orbits in the Sun-Earth \(L_{1}\)/\(L_{2}\) serve as the initial reference trajectories for quasi-periodic orbits. Then a two-level multiple shooting is introduced to transition periodic orbits to the short-term quasi-periodic orbits. Finally, a variable step-size multistep method is proposed to obtain long-term quasi-periodic orbits based on the approximately linear relationship between the two-level multiple shooting method and step size. Numerical results show that this method can effectively obtain a large set of long-term quasi-periodic orbits whether the quasi-periodic orbits have free or fixed initial positions. Furthermore, this method is also extended to design long-term quasi-periodic orbits with differential phase angles of the Moon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akiyama, Y., Bando, M., Hokamoto, S.: Periodic and quasi-periodic orbit design based on the center manifold theory. Acta Astronaut. 160, 672–682 (2019)

    Article  ADS  Google Scholar 

  • Akp, A., Eia, B., Rk, C.: Effect of moon perturbation on the energy curves and equilibrium points in the Sun–Earth–Moon system. New Astron. 84 (2020)

  • Baresi, N., Olikara, Z.P., Scheeres, D.J.: Fully numerical methods for continuing families of quasi-periodic invariant tori in astrodynamics. J. Astronaut. Sci. 65(2), 157–182 (2018)

    Article  ADS  Google Scholar 

  • Davis, K.E., Anderson, R.L., Scheeres, D.J., et al.: Optimal transfers between unstable periodic orbits using invariant manifolds. Celest. Mech. Dyn. Astron. 109(3), 241–264 (2011). https://doi.org/10.1007/s10569-010-9327-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • DeFilippi, G. Jr: Station keeping at the l4 libration point: a three dimensional study. Thesis, Air Force Inst. Of Tech (1977)

  • Dunham, D.W., Jen, S., Roberts, C., et al.: Transfer trajectory design for the SOHO libration-point mission. In: International Astronautical Federation Congress, Washington, DC (1992)

    Google Scholar 

  • Dutt, P., Anilkumar, A., George, R.: Design and analysis of weak stability boundary trajectories to moon. Astrophys. Space Sci. 363(8), 161 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  • Farquhar, R.W., Kamel, A.: Quasi-periodic orbits about the translunar libration point. Celest. Mech. 7(4), 458–473 (1973)

    Article  ADS  MATH  Google Scholar 

  • Farquhar, R.W., Dunham, D.W., Guo, Y., et al.: Utilization of libration points for human exploration in the Sun–Earth–Moon system and beyond. Acta Astronaut. 55(3), 687–700 (2004). https://doi.org/10.1016/j.actaastro.2004.05.021

    Article  ADS  Google Scholar 

  • Folta, D., Woodard, M., Cosgrove, D.: Stationkeeping of the first Earth-Moon libration orbiters: the Artemis mission. In: Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, AAS 11-515, AAS (2011)

    Google Scholar 

  • Gómez, G., Masdemont, J., Simó, C.: Quasihalo orbits associated with libration points. J. Astronaut. Sci. 46(2), 135–176 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  • Gomez, G., Jorba, A., Masdemont, J.J., et al.: Dynamics and Mission Design Near Libration Points, Vol. III: Advanced Methods for Collinear Points, vol. 4. World Scientific, Singapore (2001)

    Book  MATH  Google Scholar 

  • Guo, Q., Lei, H.: Families of Earth–Moon trajectories with applications to transfers towards Sun–Earth libration point orbits. Astrophys. Space Sci. 364(3), 43 (2019)

    Article  MathSciNet  Google Scholar 

  • Guzzetti, D., Bosanac, N., Haapala, A., et al.: Rapid trajectory design in the Earth–Moon ephemeris system via an interactive catalog of periodic and quasi-periodic orbits. Acta Astronaut. 126, 439–455 (2016)

    Article  ADS  Google Scholar 

  • Gómez, G., Howell, K., Masdemont, J., et al.: Station-keeping strategies for translunar libration point orbits. Adv. Astronaut. Sci. 99(2), 949–967 (1998)

    Google Scholar 

  • Hechler, M., Cobos, J.: Herschel, Planck and Gaia Orbit Design pp. 115–135. World Scientific, Singapore (2003)

    Google Scholar 

  • Howell, K., Pernicka, H.: Numerical determination of Lissajous trajectories in the restricted three-body problem. Celest. Mech. 41(1–4), 107–124 (1987). https://doi.org/10.1007/BF01238756

    Article  ADS  MATH  Google Scholar 

  • Hénon, M.: Numerical exploration of the restricted problem. V: Hill’s case: Periodic orbits and their stability. Astron. Astrophys. 1 (1969)

  • Hénon, M.: A family of periodic solutions of the planar three-body problem, and their stability. Celest. Mech. 13(3), 267–285 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ilin, I., Tuchin, A.: Quasi-periodic orbits in the vicinity of the sun-earth system l2 point and their implementation in “spectr-rg” and “millimetron” missions. In: Proceedings of the International Astronautical Congress, IAC, pp. 5286–5292 (2014)

    Google Scholar 

  • Ilyin, I.: Quasi-periodic orbits around Sun-Earth l 2 libration point and their transfer trajectories in Russian space missions. Thesis (2015)

  • Jin, Y., Xu, B.: Three-maneuver transfers from the cislunar l2 halo orbits to low lunar orbits. Adv. Space Res. 69(2), 989–999 (2022)

    Article  ADS  Google Scholar 

  • Jorba, A., Masdemont, J.: Dynamics in the center manifold of the collinear points of the restricted three body problem. Phys. D: Nonlinear Phenom. 132(1–2), 189–213 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kolemen, E., Kasdin, N.J., Gurfil, P.: Multiple Poincaré sections method for finding the quasiperiodic orbits of the restricted three body problem. Celest. Mech. Dyn. Astron. 112(1), 47–74 (2012). https://doi.org/10.1007/s10569-011-9383-x

    Article  ADS  MATH  Google Scholar 

  • Koon, W.S., Lo, M.W., Marsden, J.E., et al.: Dynamical Systems, the Three-Body Problem and Space Mission Design. Springer, New York (2011)

    MATH  Google Scholar 

  • Lara, M.: A Hopf variables view on the libration points dynamics. Celest. Mech. Dyn. Astron. 129(3), 285–306 (2017). https://doi.org/10.1007/s10569-017-9778-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lara, M., Pérez, I.L., López, R.: Higher order approximation to the hill problem dynamics about the libration points. Commun. Nonlinear Sci. Numer. Simul. 59, 612–628 (2018). https://doi.org/10.1016/j.cnsns.2017.12.007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lo, M., Ross, S.: The lunar l1 gateway: portal to the stars and beyond. In: AIAA Space 2001 Conference and Exposition, A01-40254 (2001). https://doi.org/10.2514/6.2001-4768

    Chapter  Google Scholar 

  • Lo, M., Williams, B., Bollman, W., et al.: Genesis mission design. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, p. 4468 (1998)

    Google Scholar 

  • Lorenzini, E., Cosmo, M., Kaiser, M., et al.: Mission analysis of spinning systems for transfers from low orbits to geostationary. J. Spacecr. Rockets 37(2), 165–172 (2000). https://doi.org/10.2514/2.3562

    Article  ADS  Google Scholar 

  • Lujan, D., Scheeres, D.J.: The Earth-Moon l2 quasi-halo orbit family: characteristics and manifold applications. In: AIAA SCITECH 2022 Forum, p. 2459 (2022)

    Google Scholar 

  • Marchand, B.G., Howell, K.C., Wilson, R.S.: Improved corrections process for constrained trajectory design in the n-body problem. J. Spacecr. Rockets 44(4), 884–897 (2007)

    Article  ADS  Google Scholar 

  • McCarthy, B.P., Howell, K.C.: Trajectory design using quasi-periodic orbits in the multi-body problem. In: Proceedings of the 29th AAS/AIAA Space Flight Mechanics Meeting (2019)

    Google Scholar 

  • McCarthy, B.P., Howell, K.C.: Leveraging quasi-periodic orbits for trajectory design in cislunar space. Astrodynamics 5(2), 139–165 (2021)

    Article  Google Scholar 

  • Mingotti, G., Topputo, F., Bernelli-Zazzera, F.: Transfers to distant periodic orbits around the moon via their invariant manifolds. Acta Astronaut. 79, 20–32 (2012)

    Article  ADS  MATH  Google Scholar 

  • Neelakantan, R., Ramanan, R.: Design of multi-revolution orbits in the framework of elliptic restricted three-body problem using differential evolution. J. Astrophys. Astron. 42(1), 1–18 (2021)

    Article  ADS  Google Scholar 

  • Olikara, Z.P., Scheeres, D.J.: Numerical method for computing quasi-periodic orbits and their stability in the restricted three-body problem. Adv. Astronaut. Sci. 145(911–930) (2012a)

  • Olikara, Z.P., Scheeres, D.J.: Numerical method for computing quasi-periodic orbits and their stability in the restricted three-body problem. Adv. Astronaut. Sci. 145(911–930), 911–930 (2012b)

    Google Scholar 

  • Parker, J.S., Anderson, R.L.: Low-Energy Lunar Trajectory Design, vol. 12. Wiley, New York (2014)

    Google Scholar 

  • Parker, J.S., Davis, K.E., Born, G.H.: Chaining periodic three-body orbits in the Earth–Moon system. Acta Astronaut. 67(5–6), 623–638 (2010)

    Article  ADS  Google Scholar 

  • Qi, R., Xu, S.: Optimal low-thrust transfers to lunar l1 halo orbit using variable specific impulse engine. J. Aerosp. Eng. 28(4), 04014096 (2015)

    Article  Google Scholar 

  • Qu, Q., Xu, M., Peng, K.: The cislunar low-thrust trajectories via the libration point. Astrophys. Space Sci. 362(5), 96 (2017). https://doi.org/10.1007/s10509-017-3075-2

    Article  ADS  MathSciNet  Google Scholar 

  • Ramteke, V., Kumar, S.R.: Halo orbit maintenance around l 1 point of the Sun-Earth system using optimal control and Lyapunov stability theory. J. Aerosp. Eng. 35(1), 04021107 (2022)

    Article  Google Scholar 

  • Richardson, D.L.: Analytic construction of periodic orbits about the collinear points. Celest. Mech. 22(3), 241–253 (1980). https://doi.org/10.1007/BF01229511

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Richardson, D.L.: Halo orbit formulation for the isee-3 mission. J. Guid. Control Dyn. 1(6), 543–548 (2012)

    Google Scholar 

  • Shahid, K., Kumar, K.D.: Nonlinear station-keeping control in the vicinity of the Sun-Earth l 2 point using solar radiation pressure. J. Aerosp. Eng. 29(3), 04015073 (2016)

    Article  Google Scholar 

  • Sousa-Silva, P., Terra, M.O., Ceriotti, M.: Fast Earth–Moon transfers with ballistic capture. Astrophys. Space Sci. 363(10), 210 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  • Tang, G., Jiang, F.: Capture of near-Earth objects with low-thrust propulsion and invariant manifolds. Astrophys. Space Sci. 361(1), 1–14 (2016). https://doi.org/10.1007/s10509-015-2592-0

    Article  ADS  MathSciNet  Google Scholar 

  • Wang, Q., Liu, J.: A Chang’e-4 mission concept and vision of future Chinese lunar exploration activities. Acta Astronaut. 127, 678–683 (2016)

    Article  ADS  Google Scholar 

  • Woodard, M., Folta, D., Woodfork, D.: Artemis: the first mission to the lunar libration orbits. In: 21st International Symposium on Space Flight Dynamics, Toulouse, France (2010)

    Google Scholar 

  • Xu, M., Tan, T., Xu, S.: Research on the transfers to halo orbits from the view of invariant manifolds. Sci. China, Phys. Mech. Astron. 55(4), 671–683 (2012). https://doi.org/10.1007/s11433-012-4680-2

    Article  ADS  Google Scholar 

  • Yadav, A.K., Kushvah, B.S., Dolas, U.: Lissajous motion near Lagrangian point l2 in radial solar sail. J. Astrophys. Astron. 39(6) (2018)

  • Yang, C., Peng, H., Tan, S., et al.: Improved time-varying controller based on parameter optimization for libration-point orbit maintenance. J. Aerosp. Eng. 29(1), 04015010 (2016)

    Article  Google Scholar 

  • Yingjing, Q., Xiaodong, Y., Wuxing, J., et al.: An improved numerical method for constructing Halo/Lissajous orbits in a full solar system model. Chin. J. Aeronaut. (2018). https://doi.org/10.1016/j.cja.2018.03.006

    Article  Google Scholar 

  • Zaborsky, S.: Generating solutions for periodic orbits in the circular restricted three-body problem. J. Astronaut. Sci. (4) (2020)

  • Zimmer, A.: Investigation of vehicle reusability for human exploration of near-Earth asteroids using Sun–Earth libration point orbits. Acta Astronaut. 90(1), 119–128 (2013). https://doi.org/10.1016/j.actaastro.2012.10.003

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the National Natural Science Foundation of China (Grants No. 12102344) and the National Key Laboratory of Aerospace Flight Dynamics.

Author information

Authors and Affiliations

Authors

Contributions

The main manuscript text was written by Minghu Tan. The analysis about the multiple shooting method was performed by Haoyu Li. Figures 3 and 6 were prepared by Bingbing Ma.

Fig. 3
figure 3

Illustration of the two-level multiple shooting method with a free initial position

Fig. 4
figure 4

A quasi-periodic orbit with duration \(T_{f} = 10 \text{ years}\)

Fig. 5
figure 5

Results of generating quasi-Lyapunov orbits with (a) \(T_{f} = 2 \text{ years}\); (b) \(T_{f} = 5 \text{ years}\); (c) \(T_{f} = 7 \text{ years}\); (d) \(T_{f} = 10 \text{ years}\)

Fig. 6
figure 6

Illustration of the two-level multiple shooting method with a fixed initial position

Fig. 7
figure 7

Results of generating quasi-Halo orbits using the multiple shooting method with a fixed initial position with (a) \(T_{f} = 1 \text{year}\); (b) \(T_{f} = 2 \text{ years}\); (c) \(T_{f} = 3 \text{ years}\)

Fig. 8
figure 8

Results of generating quasi-Lyapunov orbits using the multiple shooting method with a fixed initial position with (a) \(T_{f} = 1 \text{year}\); (b) \(T_{f} = 2 \text{ years}\); (c) \(T_{f} = 3 \text{ years}\)

Algorithm 1
figure 9

Procedure of the multistep method of calculating quasi-periodic orbits

Fig. 9
figure 10

Quasi-Halo orbits with (a) \(m = 50\mu _{m}/N\); (b) \(m = 500\mu _{m}/N\)

Algorithm 2
figure 11

Procedure of the variable step-size multistep method of calculating quasi-periodic orbits

Fig. 10
figure 12

Quasi-Lyapunov orbits with free initial positions and (a) \(T_{f} = 20 \text{ years}\); (b) \(T_{f} = 50 \text{ years}\)

Fig. 11
figure 13

Quasi-Halo orbits with free initial positions and (a) \(T_{f} = 20 \text{ years}\); (b) \(T_{f} = 50 \text{ years}\)

Fig. 12
figure 14

Quasi-Lyapunov orbits with a fixed initial position and (a) \(T_{f} = 20 \text{ years}\); (b) \(T_{f} = 50 \text{ years}\)

Fig. 13
figure 15

Quasi-Halo orbits with a fixed initial position and (a) \(T_{f} = 20 \text{ years}\); (b) \(T_{f} = 50 \text{ years}\)

Fig. 14
figure 16

(a) Quasi-Lyapunov orbit with \(\theta _{m0} = \pi /2\); (b) Quasi-Lyapunov orbit with \(\theta _{m0} = \pi \); (c) Quasi-Halo orbit with \(\theta _{m0} = \pi /2\); (d) Quasi-Halo orbit with \(\theta _{m0} = \pi \)

Corresponding author

Correspondence to Haoyu Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, M., Ma, B. & Li, H. A multi-step method to calculate long-term quasi-periodic orbits around the Sun-Earth \(L_{1}\)/\(L_{2}\). Astrophys Space Sci 367, 101 (2022). https://doi.org/10.1007/s10509-022-04135-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-022-04135-5

Keywords

Navigation