Skip to main content
Log in

Turbulence generation in the magnetopause on account of magnetic islands

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The present model is proposed to study the effect of thickness of Harris sheet and strength of guide field on the evolution of magnetic islands and generation of turbulence in magnetic reconnection sites. The governing model equation has been derived using EMHD model in the presence of the equilibrium magnetic field, consisting of guide field and shear field in the Harris sheet. We have carried out a numerical simulation of the dynamical equation for magnetopause region parameters. Simulation results reveal that as the thickness of Harris sheet increases, the intensity of evolution of magnetic islands decreases, but with increasing strength of guide field, intensity gradually increases and at later times irregular structures are formed. These structures give the indication of turbulence in magnetic reconnection site. Further, we have calculated power spectrum, which follows power index \({\sim}\,{-}1.5\) in the inertial range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ambrosiano, J., Matthaeus, W.H., Goldstein, M.L., Plante, D.: Test particle acceleration in turbulent reconnecting magnetic fields. J. Geophys. Res. Space Phys. (1988). https://doi.org/10.1029/JA093iA12p14383

    Article  Google Scholar 

  • Baker, D.N., Stone, E.C.: Observations of energetic electrons (\(E \gtrsim 200~\mbox{keV}\)) in the Earth’s magnetotail: plasma sheet and fireball observations. J. Geophys. Res. 82, 1532 (1977)

    Article  ADS  Google Scholar 

  • Bhattacharjee, A., Huang, Y.M., Yang, H., Rogers, B.: Fast reconnection in high-Lundquist-number plasmas due to the plasmoid instability. Phys. Plasmas 16, 112102 (2009)

    Article  ADS  Google Scholar 

  • Biskamp, D.: Magnetic reconnection in plasmas. Astrophys. Space Sci. 242, 165–207 (1996)

    Article  ADS  Google Scholar 

  • Bruno, R., Carbone, V., Veltri, P., Pietropaolo, E., Bavassano, B.: Identifying intermittency events in the solar wind. Planet. Space Sci. 49, 1201 (2001)

    Article  ADS  Google Scholar 

  • Chaston, C.C., Bonnell, J., McFadden, J.P., Carlson, C.W., Cully, C., Le Contel, O., Roux, A., Auster, H.U., Glassmeier, K.H., Angelopoulos, V., Russell, C.T.: Turbulent heating and cross-field transport near the magnetopause from THEMIS. Geophys. Res. Lett. 35, L17S08 (2008)

    Article  Google Scholar 

  • Chen, L.-J., Bhattacharjee, A., Puhl-Quinn, P.A., Yang, H., Bessho, N., Imada, S., Mühlbachler, S., Daly, P.W., Lefebvre, B., Khotyaintsev, Y., Vaivads, A., Fazakerley, A., Georgescu, E.: Observation of energetic electrons within magnetic islands. Nat. Phys. 4, 19–23 (2008)

    Article  Google Scholar 

  • Daughton, W., Scudder, J., Karimabadi, H.: Fully kinetic simulations of undriven magnetic reconnection with open boundary conditions. Phys. Plasmas 13, 072101 (2006)

    Article  ADS  Google Scholar 

  • Daughton, W., Roytershteyn, V., Karimabadi, H., Yin, L., Albright, B.J., Bergen, B., Bowers, K.J.: Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas. Nat. Phys. 7, 539 (2011)

    Article  Google Scholar 

  • Deng, X.H., Matsumoto, H., Kojima, H., Mukai, T., Anderson, R.R., Baumjohann, W., Nakamura, R.: Geotail encounter with reconnection diffusion region in the Earth’s magnetotail: evidence of multiple X lines collisionless reconnection? J. Geophys. Res. 109, A05206 (2004)

    Article  ADS  Google Scholar 

  • Dong, Q.L., Wang, S.J., Lu, Q.M., Haung, C., Yuan, D.-W., Liu, X., Lim, X., Li, Y.U.T., Wei, H.-G., et al.: Plasmoid ejection and secondary current sheet generation from magnetic reconnection in laser-plasma interaction. Phys. Rev. Lett. 108, 215001 (2012)

    Article  ADS  Google Scholar 

  • Eastwood, J.P., Phan, T.D., Bale, S.D., Tjulin, A.: Observations of turbulence generated by magnetic reconnection. Phys. Rev. Lett. 102, 035001 (2009)

    Article  ADS  Google Scholar 

  • Eastwood, J.P., Phan, T.-D., Mozer, F.S., Shay, M.A., Fujimoto, M., Retino, A., Hesse, M., Balogh, A., Lucek, E.A., Dandouras, I.: Multi-point observations of the Hall electromagnetic field and secondary island formation during magnetic reconnection. J. Geophys. Res. 112, A06235 (2007)

    Article  ADS  Google Scholar 

  • Ergun, R.E., Goodrich, K.A., Wilder, F.D., Holmes, J.C., Stawarz, J.E., Eriksson, S., Sturner, A.P., Malaspina, D.M., Usanova, M.E., Torbert, R.B., Lindqvist, P.-A., Khotyaintsev, Y., Burch, J.L., Strangeway, R.J., Russell, C.T., Pollock, C.J., Giles, B.L., Hesse, M., Chen, L.J., Lapenta, G., Goldman, M.V., Newman, D.L., Schwartz, S.J., Eastwood, J.P., Phan, T.D., Mozer, F.S., Drake, J., Shay, M.A., Cassak, P.A., Nakamura, R., Marklund, G.: Magnetospheric multiscale satellites observations of parallel electric fields associated with magnetic reconnection. Phys. Rev. Lett. 116, 235102 (2016)

    Article  ADS  Google Scholar 

  • Fitzpatrick, R., Waelbroeck, F.L.: Two-fluid magnetic island dynamics in slab geometry. II. Islands interacting with resistive walls or resonant magnetic perturbations. Phys. Plasmas 12, 022308 (2005)

    Article  ADS  Google Scholar 

  • Fu, X.R., Lu, Q.M., Wang, S.: The process of electron acceleration during collisionless magnetic reconnection. Phys. Plasmas 13, 012309 (2006)

    Article  ADS  Google Scholar 

  • Goyal, R., Sharma, R.P., Scime, E.E.: Time dependent evolution of linear kinetic Alfvén waves in inhomogeneous plasma. Phys. Plasmas 22, 022101 (2015)

    Article  ADS  Google Scholar 

  • Hoshino, M.: Stochastic particle acceleration in multiple magnetic islands during reconnection. Phys. Rev. Lett. 108, 135003 (2015)

    Article  ADS  Google Scholar 

  • Imada, S., Hoshino, M., Mukai, T.: Front. Magnetos. Plasma Phys. 16, 34–39 (2005)

    ADS  Google Scholar 

  • Jain, N., Büchner, J.: Three dimensional instabilities of an electron scale current sheet in collisionless magnetic reconnection. Phys. Plasmas 21, 062116 (2014)

    Article  ADS  Google Scholar 

  • Jain, N., Büchner, J.: Effect of guide field on three-dimensional electron shear flow instabilities in electron current sheets. J. Plasma Phys. 81, 905810606 (2015)

    Article  Google Scholar 

  • Karimabadi, H., Lazarian, A.: Magnetic reconnection in the presence of externally driven and self-generated turbulence. Phys. Plasmas 20, 112102 (2013)

    Article  ADS  Google Scholar 

  • Karimabadi, H., Roytershteyn, V., Wan, M., Matthaeus, W.H., Daughton, W., Wu, P., Shay, M., Loring, B., Borovsky, J., Leonardis, E., et al.: Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas. Phys. Plasmas 20, 012303 (2013a)

    Article  ADS  Google Scholar 

  • Karimabadi, H., Roytershteyn, V., Daughton, W., Liu, Y.-H.: Recent evolution in the theory of magnetic reconnection and its connection with turbulence. Space Sci. Rev. 178, 307–323 (2013b)

    Article  ADS  Google Scholar 

  • Lin, R.P., Hudson, H.S.: 10–100 keV electron acceleration and emission from solar flares. Sol. Phys. 17, 412 (1971)

    Article  ADS  Google Scholar 

  • Matthaeus, W.H., Lamkin, S.L.: Rapid magnetic reconnection caused by finite amplitude fluctuations. Phys. Fluids 28, 303 (1985)

    Article  ADS  Google Scholar 

  • Matthaeus, W.H., Lamkin, S.L.: Turbulent magnetic reconnection. Phys. Fluids 29, 2513 (1986)

    Article  ADS  Google Scholar 

  • Miller, J.A., et al.: Critical issues for understanding particle acceleration in impulsive solar flares. J. Geophys. Res. 102(14), 631 (1997)

    Google Scholar 

  • Øieroset, M., Lin, R.P., Phan, T.D., Larson, D.E., Bale, S.D.: Evidence for electron acceleration up to \({\sim}\,300~\mbox{keV}\) in the magnetic reconnection diffusion region of Earth’s magnetotail. Phys. Rev. Lett. 89, 195001 (2002)

    Article  ADS  Google Scholar 

  • Oka, M., Phan, T.D., Krucker, S., Fujimoto, M., Shinohara, I.: Electron acceleration by multi-island coalescence. Astrophys. J. 714, 915 (2010)

    Article  ADS  Google Scholar 

  • Parker, E.N.: Sweet’s mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res. 62, 509 (1957)

    Article  ADS  Google Scholar 

  • Perri, S., Goldstein, M.L., Dorelli, J.C., Sahraoui, F.: Detection of small-scale structures in the dissipation regime of solar-wind turbulence. Phys. Rev. Lett. 109, 191101 (2012)

    Article  ADS  Google Scholar 

  • Pritchett, P.L.: Energetic electron acceleration during multi-island coalescence. Phys. Plasmas 15, 102105 (2008)

    Article  ADS  Google Scholar 

  • Scime, E., Hardin, R., Biloiu, C., Keesee, A.M., Sun, X.: Flow, flow shear, and related profiles in helicon plasmas. Phys. Plasmas 14, 043505 (2007)

    Article  ADS  Google Scholar 

  • Servidio, S., Dmitruk, P., Greco, A., Wan, M., Donato, S., Cassak, P.A., Shay, M.A., Carbone, V., Matthaeus, M.: Magnetic reconnection as an element of turbulence. Nonlinear Process. Geophys. 18, 675 (2011)

    Article  ADS  Google Scholar 

  • Sweet, P.A.: Electromagnetic Phenomena in Cosmical Physics. IAU Symposium, vol. 6, p. 123 (1958)

    Google Scholar 

  • Takasao, S., Asai, A., Isobe, H., Shibata, K.: Observational evidence of particle acceleration associated with plasmoid motions. Astrophys. J. 828, 103 (2016)

    Article  ADS  Google Scholar 

  • Tanaka, K.G., Yumura, T., Fujimoto, M., et al.: Merging of magnetic islands as an efficient accelerator of electrons. Phys. Plasmas 17, 102902 (2010)

    Article  ADS  Google Scholar 

  • Veltri, P.: MHD turbulence in the solar wind: self-similarity, intermittency and coherent structures. Plasma Phys. Control. Fusion 41, 787 (1999)

    Article  ADS  Google Scholar 

  • Wang, R.S., Lu, Q.M., Du, A.M., Wang, S.: In situ observations of a secondary magnetic island in an ion diffusion region and associated energetic electrons. Phys. Rev. Lett. 104, 175003 (2010)

    Article  ADS  Google Scholar 

  • Wang, R.S., Lu, Q.M., Nakamura, R., Huang, C., Du, A., Guo, F., Teh, W., Wu, M., Lu, S., Wang, S.: Coalescence of magnetic flux ropes in the ion diffusion region of magnetic reconnection. Nat. Phys. 12, 263 (2016b)

    Article  Google Scholar 

  • Wu, M., Huang, C., Lu, Q., Volwerk, M., Nakamura, R., Vörös, Z., Zhang, T., Wang, S.: In situ observations of multistage electron acceleration driven by magnetic reconnection. J. Geophys. Res. Space Phys. 120, 6320 (2015)

    Article  ADS  Google Scholar 

  • Zank, G.P., le Roux, J.A., Webb, G.M., Dosch, A., Khabarova, O.: Particle acceleration via reconnection processes in the supersonic solar wind. Astrophys. J. 797, 28 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Nitin Yadav for fruitful discussion. The work was supported by Indian Space Research Organization (ISRO) under RESPOND program and the Department of Science and Technology (DST), India.

The model and results are generated by authors using the parameters reported by Chaston et al. (2008). For the further assistantship, readers can contact Neha Pathak (npsneha90@gmail.com).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Pathak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, N., Uma, R. & Sharma, R.P. Turbulence generation in the magnetopause on account of magnetic islands. Astrophys Space Sci 363, 240 (2018). https://doi.org/10.1007/s10509-018-3459-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-018-3459-y

Keywords

Navigation