Skip to main content

Advertisement

Log in

Recent Evolution in the Theory of Magnetic Reconnection and Its Connection with Turbulence

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The concept of reconnection is found in many fields of physics with the closest analogue to magnetic reconnection being the reconnection of vortex tubes in hydrodynamics. In plasmas, magnetic reconnection plays an important role in release of energy associated with the magnetic shear into particle energy. Although most studies to date have focused on 2D reconnection, the availability of 3D petascale kinetic simulations have brought the complexity of 3D reconnection to the forefront in collisionless reconnection studies. Here we briefly review the latest advances in 2D and compare and contrast the results with recent 3D studies that address role of anomalous transport in reconnection, effects of turbulence on the rate and structure, among others. Another outcome of recent research is the realization of a deeper link between turbulence and reconnection where the common denominator is the generic formation of electron scale sheets which dissipate the energy through reconnection. Finally, we close the review by listing some of the major outstanding problems in reconnection physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • S. D. Bale, F. S. Mozer, T. D. Phan, Observation of lower hybrid drift instability in the diffusion region at a reconnecting magnetopause. Geophys. Rev. Lett. 29, (2002)

  • J. Birn, J. Drake, M. Shay, B. Rogers, R. Denton, M. Hesse, M. Kuznetsova, Z. Ma, A. Bhattacharjee, A. Otto, P. Pritchett, Geospace environmental modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. 106, 3715 (2001)

    Article  ADS  Google Scholar 

  • D. Biskamp, Magnetic Reconnection in Plasmas (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  • A.H. Boozer, Magnetic reconnection in space. Phys. Plasmas 19, 092902 (2012)

    Article  ADS  Google Scholar 

  • D. Borgogno, D. Grasso, F.P.F. Califano, F. Pegoraro, D. Farina, Aspects of threedimensional magnetic reconnection. Phys. Plasmas 12, 032309 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  • B. Carreras, H. Hicks, J. Holmes, B. Waddell, Nonlinear coupling of tearing modes with self-consistent resistivity evolution in tokamaks. Phys. Fluids 23, 1811 (1980)

    Article  ADS  MATH  Google Scholar 

  • T. A. Carter, H. Ji, F. Trintchouk, M. Yamada, R.M.. Kulsrud, Measurement of lower-hybrid drift turbulence in a reconnecting current sheet. Phys. Rev. Lett. 88, (2002)

  • P.A. Cassak, M.A. Shay, Magnetic reconnection for coronal conditions: reconnection rates, secondary islands and onset. Space Sci. Rev. 172, 283 (2012)

    Article  ADS  Google Scholar 

  • L. Chacón, A.N. Simakov, A. Zocco, Steady-state properties of driven magnetic reconnection in 2D electron magnetohydrodynamics. Phys. Rev. Lett. 99, 235001 (2007)

    Article  ADS  Google Scholar 

  • H. Che, J.F. Drake, M. Swisdak, A current filamentation mechanism for breaking magnetic field lines during reconnection. Nature 474, 184 (2011)

    Article  ADS  Google Scholar 

  • W. Daughton, V. Roytershteyn, Emerging parameter space map of magnetic reconnection in collisional and kinetic regimes. Space Sci. Rev. 172, 271 (2012)

    Article  ADS  Google Scholar 

  • W. Daughton, J. Scudder, H. Karimabadi, Fully kinetic simulations of undriven magnetic reconnection with open boundary conditions. Phys. Plasmas 13, 072101 (2006)

    Article  ADS  Google Scholar 

  • W. Daughton, V. Roytershteyn, H. Karimabadi, L. Yin, B. Albright, B. Bergen, K. Bowers, Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas. Nat. Phys. (2011). doi:10.1038/NPHYS1965

    Google Scholar 

  • J.F. Drake, M. Swisdak, K.M. Schoeffler, B.N. Rogers, S. Kobayashi, Formation of secondary islands during magnetic reconnection. Geophys. Res. Lett. 33, L13105 (2006)

    Article  ADS  Google Scholar 

  • J. P. Eastwood, T. D. Phan, S. D. Bale, A. Tjulin, Observations of turbulence generated by magnetic reconnection. Phys. Rev. Lett. 102 (2009)

  • J. Egedal, A. Le, W. Daughton, A review of pressure anisotropy caused by electron trapping in collisionless plasma, and its implications for magnetic reconnection. Phys. Plasmas 20, 061201 (2013). doi:10.1063/1.4811092

    Article  ADS  Google Scholar 

  • W. Fox, M. Porkolab, J. Egedal, N. Katz, A. Le, Laboratory observations of electron energization and associated lower-hybrid and Trivelpiece-Gould wave turbulence during magnetic reconnection. Phys. Plasmas 17 (2010)

  • K. Fujimoto, Time evolution of the electron diffusion region and the reconnection rate in fully kinetic and large system. Phys. Plasmas 13, 072904 (2006)

    Article  ADS  Google Scholar 

  • S. Fuselier, W. Lewis, Properties of near-Earth magnetic reconnection from in-situ observations. Space Sci. Rev. 160, 55704 (2011)

    Google Scholar 

  • A.A. Galeev, M.M. Kuznetsova, L.M. Zelenyi, Magnetopause stability threshold for patchy reconnection. Space Sci. Rev. 44, 1 (1986)

    ADS  Google Scholar 

  • M.V. Goldman, G. Lapenta, D.L. Newman, S. Markidis, H. Che, Jet deflection by very weak guide fields during magnetic reconnection. Phys. Rev. Lett. 107, 135001 (2011)

    Article  ADS  Google Scholar 

  • J.T. Gosling, Magnetic reconnection in the solar wind: an update, in Twelfth International Solar Wind Conference. AIP Conference Proceedings, vol. 1216, ed. by M. Maksimovic, K. Issautier, N. Meyer-Vernet, M. Moncuquet, R. Pantellini, Melville, NY, USA (2010), p. 188

    Google Scholar 

  • J.T. Gosling, Magnetic reconnection in the solar wind. Space Sci. Rev. 172, 187 (2012)

    Article  ADS  Google Scholar 

  • M. Hesse, K. Schindler, A theoretical foundation of general magnetic reconnection. J. Geophys. Res. 93, 5558 (1988)

    ADS  Google Scholar 

  • M. Hesse, J. Birn, M. Kuznetsova, Collisionless magnetic reconnection: electron processes and transport modeling. J. Geophys. Res. 106, 3721 (2001)

    Article  ADS  Google Scholar 

  • M. Hesse, T. Neukirch, K. Schindler, M. Kuznetsova, S. Zenitani, The diffusion region in collisionless magnetic reconnection. Space Sci. Rev. 160, 3 (2011)

    Article  ADS  Google Scholar 

  • J.D. Huba, N.T. Gladd,K. Papadopoulos, The lower-hybrid-drift instability as a source of anomalous resistivity for magnetic field line reconnection. Geophys. Res. Lett. 4, 125 (1977)

    Article  ADS  Google Scholar 

  • H. Ji, S. Terry, M. Yamada, R.M.. Kulsrud, A. Kuritsyn, Y. Ren, Electromagnetic fluctuations during fast reconnection in a laboratory plasma. Phys. Rev. Lett. 92, 115001 (2004)

    Article  ADS  Google Scholar 

  • J.P. Jokipii, E.N. Parker, Random walk of magnetic lines of force in astrophysics. Phys. Rev. Lett. 21, 44 (1968)

    Article  ADS  Google Scholar 

  • H. Karimabadi, A. Lazarian, Magnetic reconnection in the presence of externally driven and self-generated turbulence. Phys. Plasmas (2013 accepted)

  • H. Karimabadi, W. Daughton, J. Scudder, Multi-scale structure of the electron the electron diffusion region. Geophys. Res. Lett. 34, 13104 (2007)

    Article  ADS  Google Scholar 

  • H. Karimabadi, V. Roytershteyn, M. Wan, W.H. Matthaeus, W. Daughton, P. Wu, M.A. Shay, B. Loring, J. Borovsky, E. Leonardis, S.C. Chapman, T.K.M. Nakamura, Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas. Phys. Plasmas 20, 012303 (2013)

    Article  ADS  Google Scholar 

  • A. Klimas, M. Hesse, S. Zenitani, Particle-in-cell simulations of collisionless reconnection with open outflow boundaries. Phys. Plasmas 15, 082102 (2008)

    Article  ADS  Google Scholar 

  • G. Lapenta, A. Lazarian, Achieving fast reconnection in resistive MHD models via turbulent means. Nonlinear Process. Geophys. 19, 251 (2012)

    Article  ADS  Google Scholar 

  • A. Lazarian, E.T. Vishniac, Reconnection in a weakly stochastic field. Astrophys. J. 517, 700 (1999)

    Article  ADS  Google Scholar 

  • A. Lazarian, L. Vlahos, G. Kowal, H. Yan, A. Beresnyak, E.M. de Gouveia Dal Pino, Turbulence, magnetic reconnection in turbulent fluids and energetic particle acceleration. Space Sci. Rev. 173, 557 (2012)

    Article  ADS  Google Scholar 

  • A. Le, J. Egedal, W. Daughton, H. Karimabadi, O. Ohia, V.S. Lukin, Regimes of the electron diffusion region in magnetic reconnection. Phys. Rev. Lett. 110, 135004 (2013)

    Article  ADS  Google Scholar 

  • E. Leonardis, S.C. Chapman, W. Daughton, V. Roytershteyn, H. Karimabadi, Identification of intermittent multifractal turbulence in fully kinetic simulations of magnetic reconnection. Phys. Rev. Lett. 110, 205002 (2013)

    Article  ADS  Google Scholar 

  • Y.-H. Liu, W. Daughton, H. Karimabadi, H. Li,V. Roytershteyn, Bifurcated structure of the electron diffusion region in three-dimensional magnetic reconnection. Phys. Rev. Lett. 110, 265004 (2013)

    Article  ADS  Google Scholar 

  • D.W. Longcope, H.R. Strauss, The form of ideal current layers in line-tied magnetic fields. Astrophys. J. 437, 851 (1994)

    Article  ADS  Google Scholar 

  • M.E. Mandt, R.E. Denton, J.F. Drake, Transition to whistler mediated magnetic reconnection. Geophys. Res. Lett. 21, 73 (1994)

    Article  ADS  Google Scholar 

  • W. Matthaeus, S. Lamkin, Rapid reconnection caused by finite amplitude fluctuations. Phys. Fluids 28, 303 (1985)

    Article  ADS  Google Scholar 

  • W. Matthaeus, M. Velli, Who needs turbulence? A review of turbulence effects in the heliosphere and on the fundamental process of reconnection. Space Sci. Rev. 160, 1 (2011)

    Article  Google Scholar 

  • F. S. Mozer, M. Wilber, J. F. Drake, Wave associated anomalous drag during magnetic field reconnection. Phys. Plasmas 18, 102902 (2011a)

    Article  ADS  Google Scholar 

  • F.S. Mozer, D. Sundkvist, J.P. McFadden, P.L. Pritchett, I. Roth, Satellite observations of plasma physics near the magnetic field reconnection X line. J. Geophys. Res. 116, A12224 (2011b)

    Article  ADS  Google Scholar 

  • E.N. Parker, Sweet’s mechansm for merging magnetic fields in conducting fluids. J. Geophys. Res. 62, 509 (1957)

    Article  ADS  Google Scholar 

  • E.N. Parker, Topological dissipation and the small-scale fields in turbulent gases. Astrophys. J. 174, 499 (1972)

    Article  ADS  Google Scholar 

  • G. Paschmann, Recent in-situ observations of magnetic reconnection in near-Earth space. Geophys. Res. Lett. 35, L19109 (2008)

    Article  ADS  Google Scholar 

  • G. Paschmann, M. Øieroset,T. Phan, In-situ observations of reconnection in space. Space Sci. Rev. (2013). doi:10.1007/s11214-012-9957-2

    Google Scholar 

  • H. Petschek, Magnetic field annihilation, in AAS-NASA Symposium on the Physics of Solar Flares, Washington, DC, ed. by W. Hess (1964), pp. 425–439

    Google Scholar 

  • T.D. Phan, J.F. Drake, M.A. Shay, F.S. Mozer, J.P. Eastwood, Evidence for an elongated (>60 ion skin depths) electron diffusion region during fast magnetic reconnection. Phys. Rev. Lett. 99, 255002 (2007)

    Article  ADS  Google Scholar 

  • D.I. Pontin, Three-dimensional magnetic reconnection regimes: a review. Adv. Space Res. 47, 1508 (2011)

    Article  ADS  Google Scholar 

  • D.I. Pontin, A.L. Wilmot-Smith, G. Hornig, K. Galsgaard, Dynamics of braided coronal loops, II: cascade to multiple small-scale reconnection events. Astron. Astrophys. 525, A57 (2011)

    Article  ADS  Google Scholar 

  • E.R. Priest, P. Demoulin, Three-dimensional magnetic reconnection without null points, I: basic theory of magnetic flipping. J. Geophys. Res. 100, 23443 (1995)

    Article  ADS  Google Scholar 

  • E. Priest, T. Forbes, Magnetic Reconnection (Cambridge University Press, Cambridge, 2000)

    Book  MATH  Google Scholar 

  • P. Pritchett, Geospace environmental modeling magnetic reconnection challenge: simulations with a full particle electromagnetic code. J. Geophys. Res. 106, 3783 (2001)

    Article  ADS  Google Scholar 

  • P. L. Pritchett, F. S. Mozer, M. Wilber, Intense perpendicular electric fields associated with three-dimensional magnetic reconnection at the subsolar magnetopause. J. Geophys. Res. 117, A06212 (2012)

    ADS  Google Scholar 

  • A.B. Rechester, M.N. Rosenbluth, Electron heat transport in a Tokamak with destroyed magnetic surfaces. Phys. Rev. Lett. 40, 38 (1978)

    Article  ADS  Google Scholar 

  • V. Roytershteyn, W. Daughton, L. Yin, B. Albright, K. Bowers, S. Dorfman, Y. Ren, H. Ji, M. Yamada, H. Karimabadi, Driven magnetic reconnection near the dreicer limit. Phys. Plasmas 17, 055706 (2010)

    Article  ADS  Google Scholar 

  • V. Roytershteyn, W. Daughton, H. Karimabadi, F.S. Mozer, Influence of the lower-hybrid drift instability on magnetic reconnection in asymmetric configurations. Phys. Rev. Lett. 108, 185001 (2012)

    Article  ADS  Google Scholar 

  • V. Roytershteyn, S. Dorfman, W. Daughton, H. Ji, M. Yamada, H. Karimabadi, Electromagnetic instability of thin reconnection layers: comparison of 3D simulations with MRX observations. Phys. Plasmas 20, 061212 (2013a)

    Article  ADS  Google Scholar 

  • V. Roytershteyn, H. Karimabadi, et al., Coherent structures and intermittent dissipation in 3D fully kinetic simulation of collisionless plasma turbulence Phys. Rev. Lett. (2013b in preparation)

  • J.D. Scudder, R.D. Holdaway, W. Daughton, H. Karimabadi, V. Roytershteyn, C.T. Russell, J.Y. Lopez, First resolved observations of the demagnetized electron-diffusion region of an astrophysical magnetic-reconnection site. Phys. Rev. Lett. 108, 225005 (2012)

    Article  ADS  Google Scholar 

  • S. Servidio, P. Dmitruk, A. Greco, M. Wan, S. Donato, P.A. Cassak, M.A. Shay, V. Carbone, W. Matthaus, Magnetic reconnection as an element of turbulence. Nonlinear Process. Geophys. 18, 675 (2011)

    Article  ADS  Google Scholar 

  • M. Shay, J. Drake, B. Rogers, R. Denton, Alfvénic collisionless magnetic reconnection and the Hall term. J. Geophys. Res. 106, 3759 (2001)

    Article  ADS  Google Scholar 

  • M. Shay, J. Drake, M. Swisdak, Two-scale structure of the electron dissipation region during collisionless magnetic reconnection. Phys. Rev. Lett. 99, 155002 (2007)

    Article  ADS  Google Scholar 

  • A.N. Simakov, L. Chacón, Quantitative, comprehensive, analytical model for magnetic reconnection in hall magnetohydrodynamics. Phys. Rev. Lett. 101, 105003 (2008)

    Article  ADS  Google Scholar 

  • B.U.Ö. Sonnerup, Magnetic field reconnection, in Solar System Plasma Processes, vol. 1320, ed. by L.J. Lanzerotti, C.F. Kennel, E.N. Parker (North-Holland, Washington, 1979), p. 45

    Google Scholar 

  • B.P. Sullivan, A. Bhattacharjee, Y.-M. Huang, Extension of the electron dissipation region in collisionless Hall magnetohydrodynamics reconnection. Phys. Plasmas 16, 102111 (2009)

    Article  ADS  Google Scholar 

  • P.A. Sweet, The neutral point theory of solar flares, in Electromagnetic Phenomena in Cosmical Physics. IAU Symp., vol. 1320, ed. by B. Lehnert (Cambridge University Press, New York, 1958), p. 123

    Google Scholar 

  • D.A. Uzdensky, Magnetic reconnection in extreme astrophysical environments. Space Sci. Rev. 160, 45 (2011)

    Article  ADS  Google Scholar 

  • M. Wan, W.H. Matthaeus, H. Karimabadi, V. Roytershteyn, M.A. Shay, P. Wu, W. Daughton, B. Loring, S.C. Chapman, Intermittent dissipation at kinetic scales in collisionless plasma turbulence. Phys. Rev. Lett. 109, 195001 (2012)

    Article  ADS  Google Scholar 

  • P. Wu, S. Perri, K. Osman, M. Wan, W.H. Matthaues, M.A. Shay, M.L. Goldstein, H. Karimabadi, S.C. Chapman, Intemittent heating is solar wind and kinetic simulations. Astrophys. J. Lett. 763, L30 (2013)

    Article  ADS  Google Scholar 

  • M. Yamada, R. Kulsrud, H. Ji, Magnetic reconnection. Rev. Mod. Phys. 82, 603 (2010)

    Article  ADS  Google Scholar 

  • A.R. Yeates, G. Hornig, A generalized flux function for three-dimensional magnetic reconnection. Phys. Plasmas 19, 102118 (2011)

    Article  ADS  Google Scholar 

  • A. Zocco, L. Chacón, A.N. Simakov, Current sheet bifurcation and collapse in electron magnetohydrodynamics. Phys. Plasmas 16, 110703 (2009)

    Article  ADS  Google Scholar 

  • E.G. Zweibel, M. Yamada, Magnetic reconnection in astrophysical and laboratory plasmas. Annu. Rev. Astron. Astrophys. 47, 291 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by NSF through EAGER 1105084 and 1202152 and by NASA’s NNH11CC65C grant. Simulations were performed on Kraken provided by the NSF at NICS, on Pleiades provided by NASA’s HEC Program, and resources of the National Center for Computational Sciences at Oak Ridge National Laboratory (Jaguar/Lens), which is supported by DOE under Contract No. DE-AC05-00OR22725. Some of the research and simulations were part of the Blue Waters sustained-petascale computing project, which is supported by the NSF (OCI 07-25070) and the state of Illinois. Visualization and analysis were performed on Nautilus and Longhorn systems using ParaView and visualization software developed by the NICS RDAV group. We especially thank Burlen Loring for help with the visualization and preparation of the figures. We acknowledge useful conversations with A. Bhattacharjee, J. Birn, Paul Cassak, L. Chacon, M. Hesse, A. Lazarian, N. F. Loureiro, W. Matthaeus, S. Servidio, and J. Scudder. We thank A. Boozer for comments on an earlier draft, A. Le for discussions and preparation of one of the figures, and for the referee for many useful comments and suggestions that led to a significant improvement in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Homa Karimabadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karimabadi, H., Roytershteyn, V., Daughton, W. et al. Recent Evolution in the Theory of Magnetic Reconnection and Its Connection with Turbulence. Space Sci Rev 178, 307–323 (2013). https://doi.org/10.1007/s11214-013-0021-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-013-0021-7

Keywords

Navigation