Skip to main content
Log in

Halo orbit transfer trajectory design using invariant manifold in the Sun-Earth system accounting radiation pressure and oblateness

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

In this paper, we study the invariant manifold and its application in transfer trajectory problem from a low Earth parking orbit to the Sun-Earth \(L_{1}\) and \(L_{2}\)-halo orbits with the inclusion of radiation pressure and oblateness. Invariant manifold of the halo orbit provides a natural entrance to travel the spacecraft in the solar system along some specific paths due to its strong hyperbolic character. In this regard, the halo orbits near both collinear Lagrangian points are computed first. The manifold’s approximation near the nominal halo orbit is computed using the eigenvectors of the monodromy matrix. The obtained local approximation provides globalization of the manifold by applying backward time propagation to the governing equations of motion. The desired transfer trajectory well suited for the transfer is explored by looking at a possible intersection between the Earth’s parking orbit of the spacecraft and the manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexander, S., Antonio, F.B., Prado, A.: Celest. Mech. Dyn. Astron. 90(3–4), 331–354 (2004)

    Google Scholar 

  • Baoyin, H., McInnes, C.: Celest. Mech. Dyn. Astron. 94, 155–171 (2006)

    Article  ADS  Google Scholar 

  • Barden, B.T.: Using stable manifolds to generate transfers in the circular restricted problem of three bodies. MS Thesis, Purdue University (1994)

  • Bettis, D.G., Szebehely, V.: Astrophys. Space Sci. 31, 388–405 (1971)

    Article  Google Scholar 

  • Betts, J.T.: J. Guid. Control Dyn. 21(2), 193–207 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  • Canalias, E., Gomez, G., Marcote, M., Masdemont, J.J.: Assessment of mission design including utilization of libration points and weak stability boundaries, ESA-ESTEC ARIADNA, 03/4103 (2004)

  • Di Donato, P.F.A., Masdemont, J.J., Paglione, P., de Almeida Prado, A.F.B.: In: Proceedings of COBEM 2007, 19th International Congress of Mechanical Engineering, November 5–9, 2007, Brasília, DF (2007)

    Google Scholar 

  • Fitzpatrick, R.: An Introduction to Celestial Mechanics. Cambridge University Press, New York (2012)

    Book  MATH  Google Scholar 

  • Folta, D.C., Beckman, M., Marr, G.C., Mesarch, M., Cooley, S., Leete, S.J.: Servicing and deployment of national resources in Sun-Earth libration point orbit. IAC Paper 02-Q.6.08 (2002)

  • Gomez, G., Jorba, A., Masdemont, J., Simo, C.: Celest. Mech. Dyn. Astron. 56, 541–562 (1993)

    Article  ADS  Google Scholar 

  • Heiligers, J., McInnes, C.: Novel solar sail mission concepts for space weather for fixed point recasting. In: 24th AAS/AIAA Space Flight Mechanics Meeting, Santa Fe, NM (2014)

    Google Scholar 

  • Howell, K.C., Kakoi, M.: Acta Astronaut. 59, 367–380 (2006)

    Article  ADS  Google Scholar 

  • Howell, K.C., Barden, B., Lo, M.: J. Astronaut. Sci. 45(2), 161–178 (1997)

    MathSciNet  Google Scholar 

  • Lei, H., Xu, B.: J. Eng. Math. 98(1), 163–186 (2016)

    Article  Google Scholar 

  • Lei, H., Xu, B.: Astrophys. Space Sci. 362(4), 75 (2017)

    Article  ADS  Google Scholar 

  • Lei, H., Xu, B., Hou, X., Sun, Y.: Celest. Mech. Dyn. Astron. 117(4), 349–384 (2013)

    Article  ADS  Google Scholar 

  • Mains, D.L.: Transfer trajectories from Earth parking orbits to L1 halo orbits. MS Thesis, Purdue University (1994)

  • Martin, T.O.: A low-thrust transfer strategy to Earth-Moon collinear libration point orbits. MS Thesis, Purdue University (2006)

  • Masdemont, J.J.: Dyn. Syst. 20, 59–113 (2005)

    Article  MathSciNet  Google Scholar 

  • McInnes, C.R.: Solar Sailing: Technology, Dynamics and Mission Applications. Springer, Berlin (1999)

    Book  Google Scholar 

  • Mireless, J.D.: The State Transition Matrix and Method of Differential Corrections. Rutgers University Press, New Brunswick (2006)

    Google Scholar 

  • Moore, A., Ober-Blobaum, S., Marsden, J.E.: Optimization of spacecraft trajectories: a method combining invariant manifold techniques and discrete mechanics optimal control, AAS, 09-257 (2010)

  • Nath, P., Ramanan, R.V.: Adv. Space Res. 57, 202–217 (2016)

    Article  ADS  Google Scholar 

  • Parrish, N.L., Parker, J.S., Hughes, S.P., Heiligers, J.: Low-thrust transfers from distant retrograde orbits to L2 halo orbits in the Earth-Moon system. In: International Conference on Astrodynamics Tools and Techniques, 6th, Darmstadt, Germany, 14–17 Mar. 2016

    Google Scholar 

  • Patterson, C.E.: Representations of invariant manifolds for applications in system-to-system transfer design. MS Thesis, Purdue University (2005)

  • Perozzi, E., Mello, S.F.: Space Manifold Dynamics: Novel Spaceways for Science and Exploration. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  • Rausch, R.R.: Earth to halo orbit transfer trajectories. MS Thesis, Purdue University (2005)

  • Seetha, S., Megala, S.: Curr. Sci. 113(4), 610–612 (2017)

    Google Scholar 

  • Shang, H., Shuai, W., Pingyuan, C.: Chin. J. Aeronaut. 27(2), 338–348 (2014)

    Article  Google Scholar 

  • Srivastava, V.K., Kumar, J., Kushvah, B.S.: Acta Astronaut. 129, 389–399 (2016)

    Article  ADS  Google Scholar 

  • Srivastava, V.K., Kumar, J., Kushvah, B.S.: Astrophys. Space Sci. 362, 49 (2017)

    Article  ADS  Google Scholar 

  • Szebehely, V.: Theory of Orbits. The Restricted Problem of Three Bodies. Academic Press, San Diego (1967)

    MATH  Google Scholar 

  • Tiwary, R.D., Kushvah, B.S.: Astrophys. Space Sci. 357, 73 (2015)

    Article  ADS  Google Scholar 

  • Vallado, D.A.: Fundamental of Astrodynamics and Applications, 4th edn. Microcosm, Hawthorne (2013)

    Google Scholar 

  • Verrier, P., Waters, W., Sieber, J.: Celest. Mech. Dyn. Astron. 120(4), 373–400 (2014)

    Article  ADS  Google Scholar 

  • Waters, T.J., McInnes, C.R.: J. Guid. Control Dyn. 30(3), 687–693 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vineet K. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, V.K., Kumar, J. & Kushvah, B.S. Halo orbit transfer trajectory design using invariant manifold in the Sun-Earth system accounting radiation pressure and oblateness. Astrophys Space Sci 363, 17 (2018). https://doi.org/10.1007/s10509-017-3235-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-017-3235-4

Keywords

Navigation