Skip to main content
Log in

Regularizing fuel-optimal multi-impulse trajectories

  • Research Article
  • Published:
Astrodynamics Aims and scope Submit manuscript

Abstract

The regularization theory has successfully enabled the removal of gravitational singularities associated with celestial bodies. In this study, regularizing techniques are merged into a multi-impulse trajectory design framework that requires delicate computations, particularly for a fuel minimization problem. Regularized variables based on the Levi–Civita or Kustaanheimo–Stiefel transformations express instantaneous velocity changes in a gradient-based direct optimization method. The formulation removes the adverse singularities associated with the null thrust impulses from the derivatives of an objective function in the fuel minimization problem. The favorite singularity-free property enables the accurate reduction of unnecessary impulses and the generation of necessary impulses for local optimal solutions in an automatic manner. Examples of fuel-optimal multi-impulse trajectories are presented, including novel transfer solutions between a near-rectilinear halo orbit and a distant retrograde orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Edelbaum, T. How many impulses? In: Proceedings of the 3rd and 4th Aerospace Sciences Meeting, 1966: AIAA 1966-7.

  2. Taheri, E., Junkins, J. L. How many impulses redux. The Journal of the Astronautical Sciences, 2020, 67(2): 257–334.

    Article  ADS  Google Scholar 

  3. Folta, D. C., Woodard, M., Howell, K., Patterson, C., Schlei, W. Applications of multi-body dynamical environments: The ARTEMIS transfer trajectory design. Acta Astronautica, 2012, 73: 237–249.

    Article  ADS  Google Scholar 

  4. Betts, J. T. Survey of numerical methods for trajectory optimization. Journal of Guidance, Control, and Dynamics, 1998, 21(2): 193–207.

    Article  ADS  MathSciNet  Google Scholar 

  5. Prussing, J. E. Primer vector theory and applications. In: Spacecraft Trajectory Optimization. Conway, B. A. Ed. Cambridge, UK: Cambridge University Press, 2010: 16–36.

    Chapter  Google Scholar 

  6. Pavlak, T., Howell, K. Strategy for optimal, long-term stationkeeping of libration point orbits in the Earth–Moon system. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, Minneapolis, Minnesota, USA, 2012: AIAA 2012-4665.

  7. Oguri, K., Oshima, K., Campagnola, S., Kakihara, K., Ozaki, N., Baresi, N., Kawakatsu, Y., Funase, R. EQUULEUS trajectory design. The Journal of the Astronautical Sciences, 2020, 67(3): 950–976.

    Article  ADS  Google Scholar 

  8. Ottesen, D., Russell, R. P. Unconstrained direct optimization of spacecraft trajectories using many embedded Lambert problems. Journal of Optimization Theory and Applications, 2021, 191(2–3): 634–674.

    Article  MathSciNet  Google Scholar 

  9. Serban, R., Koon, W. S., Lo, M. W., Marsden, J. E., Petzold, L. R., Ross, S. D., Wilson, R. S. Halo orbit mission correction maneuvers using optimal control. Automatica, 2002, 38(4): 571–583.

    Article  MathSciNet  Google Scholar 

  10. Celletti, A. Basics of regularization theory. In: Chaotic Worlds: From Order to Disorder in Gravitational N-Body Dynamical Systems. Steves, B. A., Maciejewski, A. J., Hendry, M. Eds. Dordrecht, the Netherlands: Springer, 2006: 203–230.

    Chapter  Google Scholar 

  11. Broucke, R. Periodic collision orbits in the elliptic restricted three-body problem. Celestial Mechanics, 1971, 3(4): 461–477.

    Article  ADS  Google Scholar 

  12. Oshima, K., Topputo, F., Campagnola, S., Yanao, T. Analysis of medium-energy transfers to the Moon. Celestial Mechanics and Dynamical Astronomy, 2017, 127(3): 285–300.

    Article  ADS  MathSciNet  Google Scholar 

  13. Olle, M., Rodriguez, O., Soler, J. Analytical and numerical results on families of n-ejection-collision orbits in the RTBP. Communications in Nonlinear Science and Numerical Simulation, 2020, 90: 105294.

    Article  MathSciNet  Google Scholar 

  14. Sims, J. A., Flanagan, S. N. Preliminary design of low-thrust interplanetary missions. In: Proceedings of the Astrodynamics Specialist Conference, 1999: AAS 99-338.

  15. Ellison, D. H., Conway, B. A., Englander, J. A., Ozimek, M. T. Analytic gradient computation for bounded-impulse trajectory models using two-sided shooting. Journal of Guidance, Control, and Dynamics, 2018, 41(7): 1449–1462.

    Article  ADS  PubMed Central  Google Scholar 

  16. Koon, W. S., Lo, M. W., Marsden, J. E., Ross, S. D. Dynamical Systems, the Three-Body Problem and Space Mission Design. Wellington: Marsden Books, 2011: 23–122.

    Google Scholar 

  17. Russell, R. P. Primer vector theory applied to global low-thrust trade studies. Journal of Guidance, Control, and Dynamics, 2007, 30(2): 460–472.

    Article  ADS  Google Scholar 

  18. Ricord Griesemer, P., Ocampo, C., Cooley, D. S. Optimal ballistically captured Earth–Moon transfers. Acta Astronautica, 2012, 76: 1–12.

    Article  ADS  Google Scholar 

  19. Bokelmann, K. A., Russell, R. P. Optimization of impulsive Europa capture trajectories using primer vector theory. The Journal of the Astronautical Sciences, 2020, 67(2): 485–510.

    Article  ADS  Google Scholar 

  20. Forsgren, A., Gill, P. E., Wright, M. H. Interior methods for nonlinear optimization. SIAM Review, 2002, 44(4): 525–597.

    Article  ADS  MathSciNet  Google Scholar 

  21. Ellithy, A., Abdelkhalik, O., Englander, J. Impact of using analytic derivatives in optimization for n-impulse orbit transfer problems. The Journal of the Astronautical Sciences, 2022, 69(2): 218–250.

    Article  ADS  Google Scholar 

  22. Oshima, K., Topputo, F., Yanao, T. Low-energy transfers to the Moon with long transfer time. Celestial Mechanics and Dynamical Astronomy, 2019, 131(1): 4.

    Article  ADS  MathSciNet  Google Scholar 

  23. Byrd, R. H., Hribar, M. E., Nocedal, J. An interior point algorithm for large-scale nonlinear programming. SIAM Journal on Optimization, 1999, 9(4): 877–900.

    Article  MathSciNet  Google Scholar 

  24. Broucke, R. Periodic orbits in the restricted three body problem with Earth–Moon masses. Technical Report, No. JPL-TR-32-1168. NASA, 1968.

  25. Information on https://jp.mathworks.com/help/optim/ug/fmincon.html (cited 13 Apr 2023)

  26. Howell, K. C., Breakwell, J. V. Almost rectilinear halo orbits. Celestial Mechanics, 1984, 32(1): 29–52.

    Article  ADS  MathSciNet  Google Scholar 

  27. Oshima, K. The use of vertical instability of L1 and L2 planar Lyapunov orbits for transfers from near rectilinear halo orbits to planar distant retrograde orbits in the Earth–Moon system. Celestial Mechanics and Dynamical Astronomy, 2019, 131(3): 14.

    Article  ADS  Google Scholar 

  28. Capdevila, L. R., Howell, K. C. A transfer network linking Earth, Moon, and the triangular libration point regions in the Earth–Moon system. Advances in Space Research, 2018, 62(7): 1826–1852.

    Article  ADS  Google Scholar 

  29. Wang, Y., Zhang, R. K., Zhang, C., Zhang, H. Transfers between NRHOs and DROs in the Earth–Moon system. Acta Astronautica, 2021, 186: 60–73.

    Article  ADS  Google Scholar 

  30. Vinh, N. X., Kuo, S. H., Marchal, C. Optimal time-free nodal transfers between elliptical orbits. Acta Astronautica, 1988, 17(8): 875–880.

    Article  ADS  Google Scholar 

  31. Topputo, F. On optimal two-impulse Earth–Moon transfers in a four-body model. Celestial Mechanics and Dynamical Astronomy, 2013, 117(3): 279–313.

    Article  ADS  MathSciNet  Google Scholar 

  32. Russell, R. P. Global search for planar and three-dimensional periodic orbits near Europa. The Journal of the Astronautical Sciences, 2006, 54(2): 199–226.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This study was partially supported by JSPS Grant-in-Aid (Grant No. 20K14951).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenta Oshima.

Ethics declarations

The author has no competing interests to declare that are relevant to the content of this article.

Additional information

Kenta Oshima graduated as a doctor of engineering from Waseda University in 2018. After working for two years as a JSPS postdoctoral researcher in National Astronomical Observatory of Japan, Dr. Oshima joined Hiroshima Institute of Technology as an assistant professor in 2020. His academic passion focuses on natural and controlled space trajectories with special emphasis on restricted three- and four-body problems. E-mail: k.oshima.nt@cc.it-hiroshima.ac.jp

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oshima, K. Regularizing fuel-optimal multi-impulse trajectories. Astrodyn 8, 97–119 (2024). https://doi.org/10.1007/s42064-023-0176-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42064-023-0176-2

Keywords

Navigation