Skip to main content
Log in

Normalization of Hamiltonian and nonlinear stability of the triangular equilibrium points in non-resonance case with perturbations

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

For the study of nonlinear stability of a dynamical system, normalized Hamiltonian of the system is very important to discuss the dynamics in the vicinity of invariant objects. In general, it represents a nonlinear approximation to the dynamics, which is very helpful to obtain the information as regards a realistic solution of the problem. In the present study, normalization of the Hamiltonian and analysis of nonlinear stability in non-resonance case, in the Chermnykh-like problem under the influence of perturbations in the form of radiation pressure, oblateness, and a disc is performed. To describe nonlinear stability, initially, quadratic part of the Hamiltonian is normalized in the neighborhood of triangular equilibrium point and then higher order normalization is performed by computing the fourth order normalized Hamiltonian with the help of Lie transforms. In non-resonance case, nonlinear stability of the system is discussed using the Arnold–Moser theorem. Again, the effects of radiation pressure, oblateness and the presence of the disc are analyzed separately and it is observed that in the absence as well as presence of perturbation parameters, triangular equilibrium point is unstable in the nonlinear sense within the stability range \(0<\mu<\mu_{1}=\bar{\mu_{c}}\) due to failure of the Arnold–Moser theorem. However, perturbation parameters affect the values of \(\mu\) at which \(D_{4}=0\), significantly. This study may help to analyze more generalized cases of the problem in the presence of some other types of perturbations such as P-R drag and solar wind drag. The results are limited to the regular symmetric disc but it can be extended in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarez-Ramírez, M., de Formiga, J.K., Moraes, R.V., Skea, J.E.F., Stuchi, T.J.: The stability of the triangular libration points for the plane circular restricted three-body problem with light pressure (2012). ArXiv e-prints arXiv:1212.2179

  • Benettin, G., Fassò, F., Guzzo, M.: Nekhoroshev-stability of l4 and l5 in the spatial restricted three-body problem. Regul. Chaotic Dyn. 3(3), 56–72 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Bhatnagar, K.B., Hallan, P.P.: The effect of perturbations in Coriolis and centrifugal forces on the nonlinear stability of equilibrium points in the restricted problem of three bodies. Celest. Mech. 30, 97–114 (1983). doi:10.1007/BF01231105

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Birkhoff, G.D.: Dynamical System. Amer. Math. Soc. Colloq. Publ., New York (1927)

    Book  MATH  Google Scholar 

  • Chermnykh, S.V.: Stability of libration points in a gravitational field. Leningradskii Universitet Vestnik Matematika Mekhanika Astronomiia, pp. 73–77 (1987)

  • Coppola, V.T., Rand, R.H.: Computer algebra implementation of Lie transforms for Hamiltonian systems: application to the nonlinear stability of L4. Z. Angew. Math. Mech. 69, 275–284 (1989). doi:10.1002/zamm.19890690903

    Article  MathSciNet  MATH  Google Scholar 

  • Deprit, A.: Canonical transformations depending on a parameter. Celest. Mech. 1, 1–31 (1969a)

    MathSciNet  MATH  Google Scholar 

  • Deprit, A.: Canonical transformations depending on a small parameter. Celest. Mech. 1, 12–30 (1969b). doi:10.1007/BF01230629

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Deprit, A., Deprit-Bartholome, A.: Stability of the triangular Lagrangian points. Astron. J. 72, 173 (1967). doi:10.1086/110213

    Article  ADS  MATH  Google Scholar 

  • Dragt, A., Finn, J.M.: Lie series and invariant functions for analytic symplectic maps. J. Math. Phys. 17, 2215 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Efthymiopoulos, C., Sándor, Z.: Optimized Nekhoroshev stability estimates for the Trojan asteroids with a symplectic mapping model of co-orbital motion. Mon. Not. R. Astron. Soc. 364, 253–271 (2005). doi:10.1111/j.1365-2966.2005.09572.x

    Article  ADS  Google Scholar 

  • Gabern, F., Jorba, À., Locatelli, U.: On the construction of the Kolmogorov normal form for the Trojan asteroids. Nonlinearity 18, 1705–1734 (2005). doi:10.1088/0951-7715/18/4/017

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Giorgilli, A., Skokos, C.: On the stability of the Trojan asteroids. Astron. Astrophys. 317, 254–261 (1997)

    ADS  Google Scholar 

  • Goździewski, K.: Nonlinear stability of the Lagrangian libration points in the Chermnykh problem. Celest. Mech. Dyn. Astron. 70, 41–58 (1998). doi:10.1023/A:1008250207046

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Goździewski, K.: Stability of the triangular libration points in the unrestricted planar problem of a symmetric rigid body and a point mass. Celest. Mech. Dyn. Astron. 85, 79–103 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Goździewski, K., Maciejewski, A.J.: Unrestricted planar problem of a symmetric body and a point mass. Triangular libration points and their stability. Celest. Mech. Dyn. Astron. 75, 251–285 (1999)

    Article  ADS  MATH  Google Scholar 

  • Ishwar, B.: Non-linear stability in the generalized restricted three-body problem. Celest. Mech. Dyn. Astron. 65, 253–289 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Jiang, I.G., Ip, W.H.: The planetary system of upsilon Andromedae. Astron. Astrophys. 367, 943–948 (2001). arXiv:astro-ph/0008174. doi:10.1051/0004-6361:20000468

    Article  ADS  Google Scholar 

  • Jiang, I.G., Yeh, L.C.: Dynamical effects from asteroid belts for planetary systems. Int. J. Bifurc. Chaos 14, 3153–3166 (2004a). arXiv:astro-ph/0309220

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang, I.G., Yeh, L.C.: On the Chaotic Orbits of Disc-Star-Planet Systems. ArXiv Astrophysics e-prints (2004b). arXiv:astro-ph/0404408

  • Jiang, I.G., Yeh, L.C.: On the Chermnykh-like problems: I. The mass parameter \({\mu} = 0.5\). Astrophys. Space Sci. 305, 341–348 (2006). arXiv:astro-ph/0610735. doi:10.1007/s10509-006-9065-4

    Article  ADS  MATH  Google Scholar 

  • Jorba, A.: A methodology for the numerical computation of normal forms, centre manifolds and first integrals of Hamiltonian systems. Exp. Math. 8(2), 155–195 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Kishor, R., Kushvah, B.S.: Linear stability and resonances in the generalized photogravitational Chermnykh-like problem with a disc. Mon. Not. R. Astron. Soc. 436, 1741–1749 (2013). doi:10.1093/mnras/stt1692

    Article  ADS  Google Scholar 

  • Kishor, R., Kushvah, B.S.: Lyapunov characteristic exponents in the generalized photo-gravitational Chermnykh-like problem with power-law profile. Planet. Space Sci. 84, 93–101 (2013). doi:10.1016/j.pss.2013.04.017

    Article  ADS  Google Scholar 

  • Kushvah, B.S.: Linear stability of equilibrium points in the generalized photogravitational Chermnykh’s problem. Astrophys. Space Sci. 318, 41–50 (2008). arXiv:0806.1132. doi:10.1007/s10509-008-9898-0

    Article  ADS  MATH  Google Scholar 

  • Kushvah, B.S., Sharma, J.P., Ishwar, B.: Nonlinear stability in the generalised photogravitational restricted three body problem with Poynting–Robertson drag. Astrophys. Space Sci. 312, 279–293 (2007). arXiv:math/0609543. doi:10.1007/s10509-007-9688-0

    Article  ADS  MATH  Google Scholar 

  • Kushvah, B.S., Kishor, R., Dolas, U.: Existence of equilibrium points and their linear stability in the generalized photogravitational Chermnykh-like problem with power-law profile. Astrophys. Space Sci. 337, 115–127 (2012). arXiv:1107.5390. doi:10.1007/s10509-011-0857-9

    Article  ADS  MATH  Google Scholar 

  • Lhotka, C., Efthymiopoulos, C., Dvorak, R.: Nekhoroshev stability at \(\mathrm{L}_{4}\) or \(\mathrm{L}_{5}\) in the elliptic-restricted three-body problem—application to Trojan asteroids. Mon. Not. R. Astron. Soc. 384, 1165–1177 (2008). doi:10.1111/j.1365-2966.2007.12794.x

    Article  ADS  Google Scholar 

  • Littlewood, J.E.: The Lagrange configuration in celestial mechanics. Proc. Lond. Math. Soc. s3-9(4), 525–543 (1959a). doi:10.1112/plms/s3-9.4.525

    Article  MathSciNet  MATH  Google Scholar 

  • Littlewood, J.E.: On the equilateral configuration in the restricted problem of three bodies. Proc. Lond. Math. Soc. s3-9(3), 343–372 (1959b). doi:10.1112/plms/s3-9.3.343

    Article  MathSciNet  MATH  Google Scholar 

  • Markeev, A.P., Sokolskii, A.G.: On the stability of periodic motions which are close to Lagrangian solutions. Sov. Astron. 21, 507–512 (1977)

    ADS  Google Scholar 

  • Markellos, V.V., Papadakis, K.E., Perdios, E.A.: Non-linear stability zones around triangular equilibria in the plane circular restricted three-body problem with oblateness. Astrophys. Space Sci. 245, 157–164 (1996). doi:10.1007/BF00637811

    Article  ADS  MATH  Google Scholar 

  • McCuskey, S.: Introduction to Celestial Mechanics. Addison-Wesley Series in Aerospace Science. Addison-Wesley, Reading (1963)

    MATH  Google Scholar 

  • Meyer, K.R., Schmidt, D.S.: The stability of the Lagrange triangular point and a theorem of Arnold. J. Differ. Equ. 62, 222–236 (1986). doi:10.1016/0022-0396(86)90098-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Meyer, K.R., Hall, G.R., Offin, D.C.: Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. Springer, New York (1992). doi:10.1007/2F978-0-387-09724-4

    Book  MATH  Google Scholar 

  • Papadakis, K.E.: Motion around the triangular equilibrium points of the restricted three-body problem under angular velocity variation. Astrophys. Space Sci. 299, 129–148 (2005a). doi:10.1007/s10509-005-5158-8

    Article  ADS  MATH  Google Scholar 

  • Papadakis, K.E.: Numerical exploration of Chermnykh’s problem. Astrophys. Space Sci. 299, 67–81 (2005b). doi:10.1007/s10509-005-3070-x

    Article  ADS  Google Scholar 

  • Poincaré, H.: Mémoire sur les courbes définies par une équation différentielle, I. J. Math. Pures Appl. 7, 375–422 (1881)

    MATH  Google Scholar 

  • Poincaré, H.: Mémoire sur les courbes définies par une équation différentielle, III. J. Math. Pures Appl. 1, 167–244 (1885)

    MATH  Google Scholar 

  • Ragos, O., Zagouras, C.G.: On the existence of the ‘out of plane’ equilibrium points in the photogravitational restricted three-body problem. Astrophys. Space Sci. 209, 267–271 (1993). doi:10.1007/BF00627446

    Article  ADS  MATH  Google Scholar 

  • Rivera, E.J., Lissauer, J.J.: Stability analysis of the planetary system orbiting \(\upsilon\) Andromedae. Astrophys. J. 530, 454–463 (2000). doi:10.1086/308345

    Article  ADS  Google Scholar 

  • Schuerman, D.W.: The restricted three-body problem including radiation pressure. Astrophys. J. 238, 337–342 (1980). doi:10.1086/157989

    Article  ADS  MathSciNet  Google Scholar 

  • Shevchenko, I.I.: Symbolic computation of the Birkhoff normal form in the problem of stability of the triangular libration points. Comput. Phys. Commun. 178, 665–672 (2008). doi:10.1016/j.cpc.2007.12.001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Subba Rao, P.V., Krishan Sharma, R.: Effect of oblateness on the non-linear stability of in the restricted three-body problem. Celest. Mech. Dyn. Astron. 65, 291–312 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Takens, F.: Normal forms for certain singularities of vector fields. Ann. Inst. Fourier 23, 163–195 (1973a)

    Article  MathSciNet  MATH  Google Scholar 

  • Takens, F.: Singularities of vector fields. Publ. Math. IHES 43, 47–100 (1973b)

    Article  MATH  Google Scholar 

  • Ushiki, S.: Normal forms for degenerate singularties of ordinary differential equations (Japanese). Technical Research Report of Association of Electronic Communication 82:CAS82–115 (1982)

  • Ushiki, S.: Normal forms for singularties of vector fields. Jpn. J. Appl. Math. 1, 1–37 (1984)

    Article  MATH  Google Scholar 

  • Wolfram, S.: The Mathematica Book. Wolfram Media, Champaign (2003)

    MATH  Google Scholar 

  • Yeh, L.C., Jiang, I.G.: On the Chermnykh-like problems: II. The equilibrium points. Astrophys. Space Sci. 306, 189–200 (2006). arXiv:astro-ph/0610767. doi:10.1007/s10509-006-9170-4

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very thankful for the referee’s comments and suggestions; they have been very useful and have greatly improved the manuscript. The financial support by the Department of Science and Technology, Govt. of India through the SERC-Fast Track Scheme for Young Scientist [SR/FTP/PS-121/2009] is duly acknowledged. Some of the important references in addition to basic facilities are provided by IUCAA Library, Pune, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Kishor.

Appendix

Appendix

1.1 A.1 Arnold–Moser theorem (Meyer and Schmidt 1986; Meyer et al. 1992)

Consider a Hamiltonian, which is the function of canonical coordinates \(x_{i}, y_{i}, i=1, 2\), expressed as

$$\begin{aligned} H=H_{2}+H_{4}+H_{6}+\cdots+H_{2n}+H^{*}_{2n+1}, \end{aligned}$$
(77)

where

  1. 1.

    \(H\) is real analytic in the a neighborhood of the origin in \(\mathbb{R}^{4}\);

  2. 2.

    \(H_{2k}, 1\leq k\leq n\), is a homogeneous function of degree \(k\) in \(I_{i}=\frac{1}{2}(x^{2}_{i}+y^{2}_{i}), i=1, 2\);

  3. 3.

    \(H^{*}\) has a series expansion which starts with terms at least of order \(2n+1\);

  4. 4.

    \(H_{2}=\omega_{1}I_{1}-\omega_{2}I_{2}\) with \(\omega_{i}, i=1, 2\) positive constants;

  5. 5.

    \(H_{4}=\frac{1}{2} (AI^{2}_{1}-2BI_{1}I_{2}+CI^{2}_{2} ), A, B, C\) constants.

There are several implicit assumptions in stating that Hamiltonian \(H\) in the form of (77). As \(H\) is at least quadratic in canonical coordinates \(x_{i}, y_{i}, i=1, 2\), the origin is assumed to be the equilibrium point in question. Again, \(H_{2}=\omega_{1}I_{1}-\omega_{2}I_{2}\) is the Hamiltonian of two harmonic oscillators with frequency \(\omega_{1}\) and \(\omega_{2}\), the linearization at the origin of the system of equations whose Hamiltonian is \(H\), is two harmonic oscillators. Since \(H_{2}\) is not sign definite, a simple appeal to the stability theorem of Lyapunov cannot be made. Again, \(H_{2}, H_{4}, \dots, H_{2n}\) are functions of only \(I_{i}=\frac{1}{2}(x_{i}+y_{i}), i=1, 2\), the Hamiltonian is assumed to be in Birkhoff’s normal form up to terms of degree \(2n\). Birkhoff’s normal form usually requires some non-resonance assumptions on the frequencies \(\omega_{1}\) and \(\omega_{2}\), but in order to state the theorem, we assume that \(H\) is in the required form.

Theorem A.1

Arnold–Moser

The origin is stable for the system whose Hamiltonian is (77) provided for some \(k, 2\leq k\leq n, D_{2k}=H_{2k}(\omega_{2}, \omega_{1})\neq 0\) or equivalently provided \(H_{2}\) does not divide \(H_{2k}\).

1.2 A.2 Coefficient in \(K_{2}\)

$$\begin{aligned} {k_{2020}} =&\frac{1}{\omega _{1} (2 \omega _{1}-\omega _{2} ) \omega _{2} (2 \omega _{1}+\omega _{2} )} \bigl[-4 i {g_{1011}} {g_{1110}} \omega _{1}^{3}-2 i {g_{0120}} {g_{2001}} \omega _{1}^{2} \omega _{2} +12 i {g_{1020}} {g_{2010}} \omega _{1}^{2} \omega _{2}+2 i {g_{0021}} {g_{2100}} \omega _{1}^{2} \omega _{2} \\ &{}+12 i {g_{0030}} {g_{3000}} \omega _{1}^{2} \omega _{2} +4 {g_{2020}} \omega _{1}^{3} \omega _{2}+i {g_{1011}} {g_{1110}} \omega _{1} \omega _{2}^{2}+i{g_{0120}} {g_{2001}} \omega _{1} \omega _{2}^{2}+i {g_{0021}} {g_{2100}} \omega _{1} \omega _{2}^{2} -3 i {g_{1020}} {g_{2010}} \omega _{2}^{3} \\ &{}-3 i {g_{0030}} {g_{3000}} \omega _{2}^{3}-{g_{2020}} \omega _{1} \omega _{2}^{3} \bigr], \end{aligned}$$
(78)
$$\begin{aligned} k_{2020e1} =& \frac{1}{\omega _{1} (2 \omega _{1}-\omega _{2} ) \omega _{2} (2 \omega _{1}+\omega _{2} )} \bigl[-4 i {g_{1011e1}} {g_{1110}} \omega _{1}^{3}-4 i {g_{1011}} {g_{1110e1}} \omega _{1}^{3}-2 i {g_{0120e1}} {g_{2001}} \omega _{1}^{2} \omega _{2} \\ &{}-2 i {g_{0120}} {g_{2001e1}} \omega _{1}^{2} \omega _{2}+12 i {g_{1020e1}} {g_{2010}} \omega _{1}^{2} \omega _{2} +12 i {g_{1020}} {g_{2010e1}} \omega _{1}^{2} \omega _{2}+2 i {g_{0021e1}} {g_{2100}} \omega _{1}^{2} \omega _{2} \\ &{}+2 i {g_{0021}} {g_{2100e1}} \omega _{1}^{2} \omega _{2} + 12 i {g_{0030e1}} {g_{3000}} \omega _{1}^{2} \omega _{2}+12 i {g_{0030}} {g_{3000e1}} \omega _{1}^{2} \omega _{2}+4 g_{2020e1} \omega _{1}^{3} \omega _{2} +i {g_{1011e1}} {g_{1110}} \omega _{1} \omega _{2}^{2} \\ &{}+i {g_{1011}} {g_{1110e1}} \omega _{1} \omega _{2}^{2}+i {g_{0120e1}} {g_{2001}} \omega _{1} \omega _{2}^{2} +i {g_{0120}} {g_{2001e1}} \omega _{1} \omega _{2}^{2}+i {g_{0021e1}} {g_{2100}} \omega _{1} \omega _{2}^{2}+i {g_{0021}} {g_{2100e1}} \omega _{1} \omega _{2}^{2} \\ &{}-3 i {g_{1020e1}} {g_{2010}} \omega _{2}^{3}- 3 i {g_{1020}} {g_{2010e1}} \omega _{2}^{3}-3 i {g_{0030e1}} {g_{3000}} \omega _{2}^{3} -3 i {g_{0030}} {g_{3000e1}} \omega _{2}^{3}-{g_{2020e1}} \omega _{1} \omega _{2}^{3} \bigr], \end{aligned}$$
(79)
$$\begin{aligned} k_{2020A} =&\frac{1}{\omega _{1} (2 \omega _{1}-\omega _{2} ) \omega _{2} (2 \omega _{1}+\omega _{2} )} \bigl[-4 i {g_{1011A}} {g_{1110}} \omega _{1}^{3}-4 i {g_{1011}} {g_{1110A}} \omega _{1}^{3}-2 i {g_{0120A}} {g_{2001}} \omega _{1}^{2} \omega _{2}-2 i{g_{0120}} {g_{2001A}} \omega _{1}^{2} \omega _{2} \\ &{}+12 i {g_{1020A}} {g_{2010}} \omega _{1}^{2} \omega _{2} +12 i {g_{1020}} {g_{2010A}} \omega _{1}^{2} \omega _{2}+2 i {g_{0021A}} {g_{2100}} \omega _{1}^{2} \omega _{2}+2 i {g_{0021}} {g_{2100A}} \omega _{1}^{2} \omega _{2} \\ &{}+ 12 i {g_{0030A}} {g_{3000}} \omega _{1}^{2} \omega _{2}+12 i {g_{0030}} {g_{3000A}} \omega _{1}^{2} \omega _{2}+4 {g_{2020A}} \omega _{1}^{3} \omega _{2} +i {g_{1011A}} {g_{1110}} \omega _{1} \omega _{2}^{2}+i {g_{1011}} {g_{1110A}} \omega _{1} \omega _{2}^{2} \\ &{}+i {g_{0120A}} {g_{2001}} \omega _{1} \omega _{2}^{2} +i {g_{0120}} {g_{2001A}} \omega _{1} \omega _{2}^{2}+i {g_{0021A}} {g_{2100}} \omega _{1} \omega _{2}^{2}+i {g_{0021}} {g_{2100A}} \omega _{1} \omega _{2}^{2} -3 i {g_{1020A}} {g_{2010}} \omega _{2}^{3} \\ &{}- 3 i {g_{1020}} {g_{2010A}} \omega _{2}^{3}-3 i {g_{0030A}} {g_{3000}} \omega _{2}^{3} -3 i {g_{0030}} {g_{3000A}} \omega _{2}^{3}-{g_{2020A}} \omega _{1} \omega _{2}^{3} \bigr], \end{aligned}$$
(80)
$$\begin{aligned} k_{2020e2} =& \frac{1}{\omega _{1} (2 \omega _{1}-\omega _{2} ) \omega _{2} (2 \omega _{1}+\omega _{2} )} \bigl[-4 i {g_{1011e2}} {g_{1110}} \omega _{1}^{3}-4 i {g_{1011}} {g_{1110e2}} \omega _{1}^{3}-2 i {g_{0120e2}} {g_{2001}} \omega _{1}^{2} \omega _{2} \\ &{}-2 i {g_{0120}} {g_{2001e2}} \omega _{1}^{2} \omega _{2}+12 i {g_{1020e2}} {g_{2010}} \omega _{1}^{2} \omega _{2} +12 i {{g1020}} {g_{2010e2}} \omega _{1}^{2} \omega _{2}+2 i {g_{0021e2}} {g_{2100}} \omega _{1}^{2} \omega _{2} \\ &{}+2 i {g_{0021}} {g_{2100e2}} \omega _{1}^{2} \omega _{2} + 12 i {g_{0030e2}} {g_{3000}} \omega _{1}^{2} \omega _{2}+12 i {g_{0030}} {g_{3000e2}} \omega _{1}^{2} \omega _{2}+4 {g_{2020e2}} \omega _{1}^{3} \omega _{2} +i {g_{1011e2}} {g_{1110}} \omega _{1} \omega _{2}^{2} \\ &{}+i {g_{1011}} {g_{1110e2}} \omega _{1} \omega _{2}^{2}+i {g_{0120e2}} {g_{2001}} \omega _{1} \omega _{2}^{2} +i {g_{0120}} {g_{2001e2}} \omega _{1} \omega _{2}^{2}+i {g_{0021e2}} {g_{2100}} \omega _{1} \omega _{2}^{2}+i {g_{0021}} {g_{2100e2}} \omega _{1} \omega _{2}^{2} \\ &{} -3 i {g_{1020e2}} {g_{2010}} \omega _{2}^{3}- 3 i {g_{1020}} {g_{2010e2}} \omega _{2}^{3}-3 i {g_{0030e2}} {g_{3000}} \omega _{2}^{3} -3 i{g_{0030}} {g_{3000e2}} \omega _{2}^{3}-{g_{2020e2}} \omega _{1} \omega _{2}^{3} \bigr], \end{aligned}$$
(81)
$$\begin{aligned} k_{1111} =&\frac{1}{\omega _{1} (\omega _{1}-2 \omega _{2} ) (2 \omega _{1}-\omega _{2} ) \omega _{2} (2 \omega _{1}+\omega _{2} ) (\omega _{1}+2 \omega _{2} )} \bigl[-8 i {g_{0201}} {g_{1011}} \omega _{1}^{5}-8 i {g_{0102}} {g_{1110}} \omega _{1}^{5}-16 i {g_{0210}} {g_{1002}} \omega _{1}^{4} \omega _{2} \\ &{}+8 i {g_{1020}} {g_{1101}} \omega _{1}^{4} \omega _{2}+16 i {g_{0012}} {g_{1200}} \omega _{1}^{4} \omega _{2}+8 i {g_{0120}} {g_{2001}} \omega _{1}^{4} \omega _{2}+8 i {g_{0111}} {g_{2010}} \omega _{1}^{4} \omega _{2}+8 i{g_{0021}} {g_{2100}} \omega _{1}^{4} \omega _{2} \\ &{}+4 {g_{1111}} \omega _{1}^{5} \omega _{2}+32 i {g_{0210}} {g_{1002}} \omega _{1}^{3} \omega _{2}^{2}+ 34 i {g_{0201}} {g_{1011}} \omega _{1}^{3} \omega _{2}^{2}+34 i {g_{0102}} {g_{1110}} \omega _{1}^{3} \omega _{2}^{2}+32 i {g_{0012}} {g_{1200}} \omega _{1}^{3} \omega _{2}^{2} \\ &{}-4 i {g_{0120}} {g_{2001}} \omega _{1}^{3} \omega _{2}^{2}+4 i {g_{0021}} {g_{2100}} \omega _{1}^{3} \omega _{2}^{2}+4 i {g_{0210}} {g_{1002}} \omega _{1}^{2} \omega _{2}^{3}-34 i {g_{1020}} {g_{1101}} \omega _{1}^{2} \omega _{2}^{3}-4 i{g_{0012}} {g_{1200}} \omega _{1}^{2} \omega _{2}^{3} \\ &{}-32 i {g_{0120}} {g_{2001}} \omega _{1}^{2} \omega _{2}^{3}- 34 i {g_{0111}} {g_{2010}} \omega _{1}^{2} \omega _{2}^{3}-32 i {g_{0021}} {g_{2100}} \omega _{1}^{2} \omega _{2}^{3}-17 {g_{1111}} \omega _{1}^{3} \omega _{2}^{3}-8 i {g_{0210}} {g_{1002}} \omega _{1} \omega _{2}^{4} \\ &{}-8 i {g_{0201}} {g_{1011}} \omega _{1} \omega _{2}^{4}-8 i {g_{0102}} {g_{1110}} \omega _{1} \omega _{2}^{4} -8 i {g_{0012}} {g_{1200}} \omega _{1} \omega _{2}^{4}+16 i {g_{0120}} {g_{2001}} \omega _{1} \omega _{2}^{4}-16 i {g_{0021}} {g_{2100}} \omega _{1} \omega _{2}^{4} \\ &{}+8 i {g_{1020}} {g_{1101}} \omega _{2}^{5}+8 i {g_{0111}} {g_{2010}} \omega _{2}^{5}+4 {g_{1111}} \omega _{1} \omega_{2}^{5} \bigr], \end{aligned}$$
(82)
$$\begin{aligned} k_{1111e1} =&\frac{1}{\omega _{1} (\omega _{1}-2 \omega _{2} ) (2 \omega _{1}-\omega _{2} ) \omega _{2} (2 \omega _{1}+\omega _{2} ) (\omega _{1}+2 \omega _{2} )} \bigl[-8 i {g_{0201e1}} {g_{1011}} \omega _{1}^{5}-8 i {g_{0201}} {g_{1011e1}} \omega _{1}^{5}-8 i {g_{0102e1}} {g_{1110}} \omega _{1}^{5} \\ &{}-8 i {g_{0102}} {g_{1110e1}} \omega _{1}^{5} -16 i {g_{0210e1}} {g_{1002}} \omega _{1}^{4} \omega _{2}-16 i {g_{0210}} {g_{1002e1}} \omega _{1}^{4} \omega _{2}+8 i {g_{1020e1}} {g_{1101}} \omega _{1}^{4} \omega _{2} \\ &{}+8 i {g_{1020}} {g_{1101e1}} \omega _{1}^{4} \omega _{2}+16 i {g_{0012e1}} {g_{1200}} \omega _{1}^{4} \omega _{2}+ 16 i {g_{0012}} {g_{1200e1}} \omega _{1}^{4} \omega _{2} +8 i {g_{0120e1}} {g_{2001}} \omega _{1}^{4} \omega _{2} \\ &{}+8 i {g_{0120}} {g_{2001e1}} \omega _{1}^{4} \omega _{2}+8 i {g_{0111e1}} {g_{2010}} \omega _{1}^{4} \omega _{2} +8 i{g_{0111}} {g_{2010e1}} \omega _{1}^{4} \omega _{2}+8 i {g_{0021e1}} {g_{2100}} \omega _{1}^{4} \omega _{2} \\ &{}+8 i {g_{0021}} {g_{2100e1}} \omega _{1}^{4} \omega _{2} +4 {g_{1111e1}} \omega _{1}^{5} \omega _{2}+32 i{g_{0210e1}} {g_{1002}} \omega _{1}^{3} \omega _{2}^{2}+ 32 i {g_{0210}} {g_{1002e1}} \omega _{1}^{3} \omega _{2}^{2}+34 i {g_{0201e1}} {g_{1011}} \omega _{1}^{3} \omega _{2}^{2} \\ &{}+34 i {g_{0201}} {g_{1011e1}} \omega _{1}^{3} \omega _{2}^{2}+34 i {g_{0102e1}} {g_{1110}} \omega _{1}^{3} \omega _{2}^{2}+34 i {g_{0102}} {g_{1110e1}} \omega _{1}^{3} \omega _{2}^{2}+32 i{g_{0012e1}} {g_{1200}} \omega _{1}^{3} \omega _{2}^{2} \\ &{}+32 i {g_{0012}} {g_{1200e1}} \omega _{1}^{3} \omega _{2}^{2}-4 i {g_{0120e1}} {g_{2001}} \omega _{1}^{3} \omega _{2}^{2}-4 i {g_{0120}} {g_{2001e1}} \omega _{1}^{3} \omega _{2}^{2}+ 4 i {g_{0021e1}} {g_{2100}} \omega _{1}^{3} \omega _{2}^{2} \\ &{}+4 i {g_{0021}} {g_{2100e1}} \omega _{1}^{3} \omega _{2}^{2}+4 i {g_{0210e1}} {g_{1002}} \omega _{1}^{2} \omega _{2}^{3}+4 i {g_{0210}} {g_{1002e1}} \omega _{1}^{2} \omega _{2}^{3}-34 i {g_{1020e1}} {g_{1101}} \omega _{1}^{2} \omega _{2}^{3} \\ &{}-34 i {g_{1020}} {g_{1101e1}} \omega _{1}^{2} \omega _{2}^{3}-4 i {g_{0012e1}} {g_{1200}} \omega _{1}^{2} \omega _{2}^{3}-4 i {g_{0012}} {g_{1200e1}} \omega _{1}^{2} \omega _{2}^{3}-32 i {g_{0120e1}} {g_{2001}} \omega _{1}^{2} \omega _{2}^{3} \\ &{}- 32 i {g_{0120}} {g_{2001e1}} \omega _{1}^{2} \omega _{2}^{3}-34 i {g_{0111e1}} {g_{2010}} \omega _{1}^{2} \omega _{2}^{3}-34 i {g_{0111}} {g_{2010e1}} \omega _{1}^{2} \omega _{2}^{3}-32 i {g_{0021e1}} {g_{2100}} \omega _{1}^{2} \omega _{2}^{3} \\ &{}-32 i {g_{0021}} {g_{2100e1}} \omega _{1}^{2} \omega _{2}^{3}-17 {g_{1111e1}} \omega _{1}^{3} \omega _{2}^{3}-8 i {g_{0210e1}} {g_{1002}} \omega _{1} \omega _{2}^{4}-8 i {g_{0210}} {g_{1002e1}} \omega _{1} \omega _{2}^{4}-8 i {g_{0201e1}} {g_{1011}} \omega _{1} \omega _{2}^{4} \\ &{}- 8 i {g_{0201}} {g_{1011e1}} \omega _{1} \omega _{2}^{4}-8 i {g_{0102e1}} {g_{1110}} \omega _{1} \omega _{2}^{4}-8 i {g_{0102}} {g_{1110e1}} \omega _{1} \omega _{2}^{4}-8 i {g_{0012e1}} {g_{1200}} \omega _{1} \omega _{2}^{4} \\ &{}-8 i {g_{0012}} {g_{1200e1}} \omega _{1} \omega _{2}^{4}+16 i {g_{0120e1}} {g_{2001}} \omega _{1} \omega _{2}^{4}+16 i {g_{0120}} {g_{2001e1}} \omega _{1} \omega _{2}^{4} -16 i {g_{0021e1}} {g_{2100}} \omega_{1} \omega_{2}^{4} \\ &{}-16 i {g_{0021}} {g_{2100e1}} \omega _{1} \omega _{2}^{4}+8 i {g_{1020e1}} {g_{1101}} \omega _{2}^{5}+8 i {g_{1020}} {g_{1101e1}} \omega _{2}^{5}+8 i {g_{0111e1}} {g_{2010}} \omega _{2}^{5}+8i {g_{0111}} {g_{2010e1}} \omega_{2}^{5} \\ &{} +4 {g_{1111e1}} \omega _{1} \omega_{2}^{5} \bigr], \end{aligned}$$
(83)
$$\begin{aligned} k_{1111A} =&\frac{1}{\omega _{1} (\omega _{1}-2 \omega _{2} ) (2 \omega _{1}-\omega _{2} ) \omega _{2} (2 \omega _{1}+\omega _{2} ) (\omega _{1}+2 \omega _{2} )} \bigl[-8 i {g_{0201A}} {g_{1011}} \omega _{1}^{5}-8 i {g_{0201}} {g_{1011A}} \omega _{1}^{5}-8 i {g_{0102A}} {g_{1110}} \omega _{1}^{5} \\ &{}-8 i {g_{0102}} {g_{1110A}} \omega _{1}^{5} -16 i {g_{0210A}} {g_{1002}} \omega _{1}^{4} \omega _{2}-16 i {g_{0210}} {g_{1002A}} \omega _{1}^{4} \omega _{2}+8 i {g_{1020A}} {g_{1101}} \omega _{1}^{4} \omega _{2}+8 i {g_{1020}} {g_{1101A}} \omega _{1}^{4} \omega _{2} \\ &{}+16 i {g_{0012A}} {g_{1200}} \omega _{1}^{4} \omega _{2}+16 i {g_{0012}} {g_{1200A}} \omega _{1}^{4} \omega _{2} + 8 i {g_{0120A}} {g_{2001}} \omega _{1}^{4} \omega _{2}+8 i {g_{0120}} {g_{2001A}} \omega _{1}^{4} \omega _{2} \\ &{}+8 i {g_{0111A}} {g_{2010}} \omega _{1}^{4} \omega _{2} +8 i {g_{0111}} {g_{2010A}} \omega _{1}^{4} \omega _{2}+8 i {g_{0021A}} {g_{2100}} \omega _{1}^{4} \omega _{2}+8 i {g_{0021}} {g_{2100A}} \omega _{1}^{4} \omega _{2} +4 {g_{1111A}} \omega _{1}^{5} \omega _{2} \\ &{}+32 i {g_{0210A}} {g_{1002}} \omega _{1}^{3} \omega _{2}^{2}+32 i {g_{0210}} {g_{1002A}} \omega _{1}^{3} \omega _{2}^{2}+34 i {g_{0201A}} {g_{1011}} \omega _{1}^{3} \omega _{2}^{2}+ 34 i {g_{0201}} {g_{1011A}} \omega _{1}^{3} \omega _{2}^{2} \\ &{}+34 i {g_{0102A}} {g_{1110}} \omega _{1}^{3} \omega _{2}^{2}+34 i {g_{0102}} {g_{1110A}} \omega _{1}^{3} \omega _{2}^{2}+32 i {g_{0012A}} {g_{1200}} \omega _{1}^{3} \omega _{2}^{2}+32 i {g_{0012}} {g_{1200A}} \omega _{1}^{3} \omega _{2}^{2} \\ &{}-4 i {g_{0120A}} {g_{2001}} \omega _{1}^{3} \omega _{2}^{2}-4 i {g_{0120}} {g_{2001A}} \omega _{1}^{3} \omega _{2}^{2}+4 i {g_{0021A}} {g_{2100}} \omega _{1}^{3} \omega _{2}^{2}+4 i {g_{0021}} {g_{2100A}} \omega _{1}^{3} \omega _{2}^{2}+ 4 i {g_{0210A}} {g_{1002}} \omega _{1}^{2} \omega _{2}^{3} \\ &{}+4 i {g_{0210}} {g_{1002A}} \omega _{1}^{2} \omega _{2}^{3}-34 i {g_{1020A}} {g_{1101}} \omega _{1}^{2} \omega _{2}^{3}-34 i {g_{1020}} {g_{1101A}} \omega _{1}^{2} \omega _{2}^{3}-4 i {g_{0012A}} {g_{1200}} \omega _{1}^{2} \omega _{2}^{3} \\ &{}-4 i {g_{0012}} {g_{1200A}} \omega _{1}^{2} \omega _{2}^{3}-32 i {g_{0120A}} {g_{2001}} \omega _{1}^{2} \omega _{2}^{3}-32 i {g_{0120}} {g_{2001A}} \omega _{1}^{2} \omega _{2}^{3}-34 i {g_{0111A}} {g_{2010}} \omega _{1}^{2} \omega _{2}^{3} \\ &{}- 34 i {g_{0111}} {g_{2010A}} \omega _{1}^{2} \omega _{2}^{3}-32 i {g_{0021A}} {g_{2100}} \omega _{1}^{2} \omega _{2}^{3}-32 i {g_{0021}} {g_{2100A}} \omega _{1}^{2} \omega _{2}^{3}-17 {g_{1111A}} \omega _{1}^{3} \omega _{2}^{3}-8 i {g_{0210A}} {g_{1002}} \omega _{1} \omega _{2}^{4} \\ &{}-8 i {g_{0210}} {g_{1002A}} \omega _{1} \omega _{2}^{4}-8 i {g_{0201A}} {g_{1011}} \omega _{1} \omega _{2}^{4}-8 i {g_{0201}} {g_{1011A}} \omega _{1} \omega _{2}^{4} -8 i {g_{0102A}} {g_{1110}} \omega _{1} \omega _{2}^{4}- 8 i {g_{0102}} {g_{1110A}} \omega _{1} \omega _{2}^{4} \\ &{}-8 i {g_{0012A}} {g_{1200}} \omega _{1} \omega _{2}^{4} -8 i {g_{0012}} {g_{1200A}} \omega _{1} \omega _{2}^{4}+16 i {g_{0120A}} {g_{2001}} \omega _{1} \omega _{2}^{4}+16 i {g_{0120}} {g_{2001A}} \omega _{1} \omega _{2}^{4} \\ &{} -16 i {g_{0021A}} {g_{2100}} \omega _{1} \omega _{2}^{4}-16 i {g_{0021}} {g_{2100A}} \omega _{1} \omega _{2}^{4}+8 i {g_{1020A}} {g_{1101}} \omega _{2}^{5}+8 i {g_{1020}} {g_{1101A}} \omega _{2}^{5}+ 8 i {g_{0111A}} {g_{2010}} \omega _{2}^{5} \\ &{}+8 i {g_{0111}} {g_{2010A}} \omega _{2}^{5}+4 {g_{1111A}} \omega _{1} \omega _{2}^{5} \bigr], \end{aligned}$$
(84)
$$\begin{aligned} k_{1111e2} =&\frac{1}{\omega _{1} (\omega _{1}-2 \omega _{2} ) (2 \omega _{1}-\omega _{2} ) \omega _{2} (2 \omega _{1}+\omega _{2} ) (\omega _{1}+2 \omega _{2} )} \bigl[-8 i {g_{0201e2}} {g_{1011}} \omega _{1}^{5}-8 i {g_{0201}} {g_{1011e2}} \omega _{1}^{5}-8 i {g_{0102e2}} {g_{1110}} \omega _{1}^{5} \\ &{}-8 i {g_{0102}} {g_{1110e2}} \omega _{1}^{5} -16 i {g_{0210e2}} {g_{1002}} \omega _{1}^{4} \omega _{2}-16 i {g_{0210}} {g_{1002e2}} \omega _{1}^{4} \omega _{2}+8 i {g_{1020e2}} {g_{1101}} \omega _{1}^{4} \omega _{2} \\ &{}+8 i {g_{1020}} {g_{1101e2}} \omega _{1}^{4} \omega _{2}+16 i {g_{0012e2}} {g_{1200}} \omega _{1}^{4} \omega _{2}+ 16 i {g_{0012}} {g_{1200e2}} \omega _{1}^{4} \omega _{2} +8 i {g_{0120e2}} {g_{2001}} \omega _{1}^{4} \omega _{2} \\ &{}+8 i {g_{0120}} {g_{2001e2}} \omega _{1}^{4} \omega _{2}+8 i {g_{0111e2}} {g_{2010}} \omega _{1}^{4} \omega _{2} +8 i {g_{0111}} {g_{2010e2}} \omega _{1}^{4} \omega _{2}+8 i {g_{0021e2}} {g_{2100}} \omega _{1}^{4} \omega _{2} \\ &{}+8 i {g_{0021}} {g_{2100e2}} \omega _{1}^{4} \omega _{2} +4 {g_{1111e2}} \omega _{1}^{5} \omega _{2}+32 i {g_{0210e2}} {g_{1002}} \omega _{1}^{3} \omega _{2}^{2}+ 32 i {g_{0210}} {g_{1002e2}} \omega _{1}^{3} \omega _{2}^{2}+34 i {g_{0201e2}} {g_{1011}} \omega _{1}^{3} \omega _{2}^{2} \\ &{}+34 i {g_{0201}} {g_{1011e2}} \omega _{1}^{3} \omega _{2}^{2}+34 i {g_{0102e2}} {g_{1110}} \omega _{1}^{3} \omega _{2}^{2}+34 i {g_{0102}} {g_{1110e2}} \omega _{1}^{3} \omega _{2}^{2}+32 i {g_{0012e2}} {g_{1200}} \omega _{1}^{3} \omega _{2}^{2} \\ &{}+32 i {g_{0012}} {g_{1200e2}} \omega _{1}^{3} \omega _{2}^{2}-4 i {g_{0120e2}} {g_{2001}} \omega _{1}^{3} \omega _{2}^{2}-4 i {g_{0120}} {g_{2001e2}} \omega _{1}^{3} \omega _{2}^{2}+ 4 i {g_{0021e2}} {g_{2100}} \omega _{1}^{3} \omega _{2}^{2} \\ &{}+4 i {g_{0021}} {g_{2100e2}} \omega _{1}^{3} \omega _{2}^{2}+4 i {g_{0210e2}} {g_{1002}} \omega _{1}^{2} \omega _{2}^{3}+4 i {g_{0210}} {g_{1002e2}} \omega _{1}^{2} \omega _{2}^{3}-34 i {g_{1020e2}} {g_{1101}} \omega _{1}^{2} \omega _{2}^{3} \\ &{}-34 i {g_{1020}} {g_{1101e2}} \omega _{1}^{2} \omega _{2}^{3}-4 i {g_{0012e2}} {g_{1200}} \omega _{1}^{2} \omega _{2}^{3}-4 i {g_{0012}} {g_{1200e2}} \omega _{1}^{2} \omega _{2}^{3}-32 i {g_{0120e2}} {g_{2001}} \omega _{1}^{2} \omega _{2}^{3} \\ &{}- 32 i {g_{0120}} {g_{2001e2}} \omega _{1}^{2} \omega _{2}^{3}-34 i {g_{0111e2}} {g_{2010}} \omega _{1}^{2} \omega _{2}^{3}-34 i {g_{0111}} {g_{2010e2}} \omega _{1}^{2} \omega _{2}^{3}-32 i {g_{0021e2}} {g_{2100}} \omega _{1}^{2} \omega _{2}^{3} \\ &{}-32 i {g_{0021}} {g_{2100e2}} \omega _{1}^{2} \omega _{2}^{3}-17 {g_{1111e2}} \omega _{1}^{3} \omega _{2}^{3}-8 i {g_{0210e2}} {g_{1002}} \omega _{1} \omega _{2}^{4}-8 i {g_{0210}} {g_{1002e2}} \omega _{1} \omega _{2}^{4}-8 i {g_{0201e2}} {g_{1011}} \omega _{1} \omega _{2}^{4} \\ &{}- 8 i {g_{0201}} {g_{1011e2}} \omega _{1} \omega _{2}^{4}-8 i {g_{0102e2}} {g_{1110}} \omega _{1} \omega _{2}^{4}-8 i {g_{0102}} {g_{1110e2}} \omega _{1} \omega _{2}^{4}-8 i {g_{0012e2}} {g_{1200}} \omega _{1} \omega _{2}^{4} \\ &{}-8 i {g_{0012}} {g_{1200e2}} \omega _{1} \omega _{2}^{4}+16 i {g_{0120e2}} {g_{2001}} \omega _{1} \omega _{2}^{4}+16 i {g_{0120}} {g_{2001e2}} \omega _{1} \omega _{2}^{4} -16 i {g_{0021e2}} {g_{2100}} \omega _{1} \omega _{2}^{4} \\ &{}-16 i {g_{0021}} {g_{2100e2}} \omega _{1} \omega _{2}^{4}+ 8 i {g_{1020e2}} {g_{1101}} \omega _{2}^{5} +8 i {g_{1020}} {g_{1101e2}} \omega _{2}^{5}+8 i {g_{0111e2}} {g_{2010}} \omega _{2}^{5}+8 i {g_{0111}} {g_{2010e2}} \omega _{2}^{5} \\ &{}+4 {g_{1111e2}} \omega _{1} \omega _{2}^{5} \bigr], \end{aligned}$$
(85)
$$\begin{aligned} k_{0202} =&\frac{1}{\omega _{1} (\omega _{1}-2 \omega _{2} ) \omega _{2} (\omega _{1}+2 \omega _{2} )} \bigl[-3 i {g_{0102}} {g_{0201}} \omega _{1}^{3}-3 i {g_{0003}} {g_{0300}} \omega _{1}^{3}+i {g_{0210}} {g_{1002}} \omega _{1}^{2} \omega _{2}+i {g_{0111}} {g_{1101}} \omega _{1}^{2} \omega _{2} \\ &{}+i {g_{0012}} {g_{1200}} \omega _{1}^{2} \omega _{2} + {g_{0202}} \omega _{1}^{3} \omega _{2}+12 i {g_{0102}} {g_{0201}} \omega _{1} \omega _{2}^{2}+12 i {g_{0003}} {g_{0300}} \omega _{1} \omega _{2}^{2} -2 i {g_{0210}} {g_{1002}} \omega _{1} \omega _{2}^{2} \\ &{}+2 i {g_{0012}} {g_{1200}} \omega _{1} \omega _{2}^{2}-4 i {g_{0111}} {g_{1101}} \omega _{2}^{3}-4 {g_{0202}} \omega _{1} \omega _{2}^{3} \bigr], \end{aligned}$$
(86)
$$\begin{aligned} k_{0202e1} =&\frac{1}{\omega _{1} (\omega _{1}-2 \omega _{2} ) \omega _{2} (\omega _{1}+2 \omega _{2} )} \bigl[-3 i {g_{0102e1}} {g_{0201}} \omega _{1}^{3}-3 i {g_{0102}} {g_{0201e1}} \omega _{1}^{3}-3 i {g_{0003e1}} {g_{0300}} \omega _{1}^{3}-3 i {g_{0003}} {g_{0300e1}} \omega _{1}^{3} \\ &{}+i {g_{0210e1}} {g_{1002}} \omega _{1}^{2} \omega _{2}+i {g_{0210}} {g_{1002e1}} \omega _{1}^{2} \omega _{2}+i {g_{0111e1}} {g_{1101}} \omega _{1}^{2} \omega _{2}+i {g_{0111}} {g_{1101e1}} \omega _{1}^{2} \omega _{2} +i {g_{0012e1}} {g_{1200}} \omega _{1}^{2} \omega _{2} \\ &{}+ i {g_{0012}} {g_{1200e1}} \omega _{1}^{2} \omega _{2}+ {g_{0202e1}} \omega _{1}^{3} \omega _{2}+12 i {g_{0102e1}} {g_{0201}} \omega _{1} \omega _{2}^{2}+12 i {g_{0102}} {g_{0201e1}} \omega _{1} \omega _{2}^{2} \\ &{}+12 i {g_{0003e1}} {g_{0300}} \omega _{1} \omega _{2}^{2}+12 i {g_{0003}} {g_{0300e1}} \omega _{1} \omega _{2}^{2}-2 i {g_{0210e1}} {g_{1002}} \omega _{1} \omega _{2}^{2}-2 i {g_{0210}} {g_{1002e1}} \omega _{1} \omega _{2}^{2} \\ &{} +2 i {g_{0012e1}} {g_{1200}} \omega _{1} \omega _{2}^{2}+ 2 i {g_{0012}} {g_{1200e1}} \omega _{1} \omega _{2}^{2}-4 i {g_{0111e1}} {g_{1101}} \omega _{2}^{3}-4 i {g_{0111}} {g_{1101e1}} \omega _{2}^{3}-4 {g_{0202e1}} \omega _{1} \omega _{2}^{3} \bigr], \end{aligned}$$
(87)
$$\begin{aligned} k_{0202A} =&\frac{1}{\omega _{1} (\omega _{1}-2 \omega _{2} ) \omega _{2} (\omega _{1}+2 \omega _{2} )} \bigl[-3 i {g_{0102A}} {g_{0201}} \omega _{1}^{3}-3 i {g_{0102}} {g_{0201A}} \omega _{1}^{3}-3 i {g_{0003A}} {g_{0300}} \omega _{1}^{3}-3 i {g_{0003}} {g_{0300A}} \omega _{1}^{3} \\ &{}+i {g_{0210A}} {g_{1002}} \omega _{1}^{2} \omega _{2}+i {g_{0210}} {g_{1002A}} \omega _{1}^{2} \omega _{2}+i {g_{0111A}} {g_{1101}} \omega _{1}^{2} \omega _{2}+i {g_{0111}} {g_{1101A}} \omega _{1}^{2} \omega _{2} +i {g_{0012A}} {g_{1200}} \omega _{1}^{2} \omega _{2} \\ &{}+ i {g_{0012}} {g_{1200A}} \omega _{1}^{2} \omega _{2}+ {g_{0202A}} \omega _{1}^{3} \omega _{2}+12 i {g_{0102A}} {g_{0201}} \omega _{1} \omega _{2}^{2}+12 i {g_{0102}} {g_{0201A}} \omega _{1} \omega _{2}^{2}+12 i {g_{0003A}} {g_{0300}} \omega _{1} \omega _{2}^{2} \\ &{}+12 i {g_{0003}} {g_{0300A}} \omega _{1} \omega _{2}^{2}-2 i {g_{0210A}} {g_{1002}} \omega _{1} \omega _{2}^{2}-2 i {g_{0210}} {g_{1002A}} \omega _{1} \omega _{2}^{2} +2 i {g_{0012A}} {g_{1200}} \omega _{1} \omega _{2}^{2}+2 i {g_{0012}} {g_{1200A}} \omega _{1} \omega _{2}^{2} \\ &{}- 4 i {g_{0111A}} {g_{1101}} \omega _{2}^{3} -4 i {g_{0111}} {g_{1101A}} \omega _{2}^{3}-4 {g_{0202A}} \omega _{1} \omega _{2}^{3} \bigr], \end{aligned}$$
(88)
$$\begin{aligned} k_{0202e2} =&\frac{1}{\omega _{1} (\omega _{1}-2 \omega _{2} ) \omega _{2} (\omega _{1}+2 \omega _{2} )} \bigl[-3 i {g_{0102e2}} {g_{0201}} \omega _{1}^{3}-3 i {g_{0102}} {g_{0201e2}} \omega _{1}^{3}-3 i {g_{0003e2}} {g_{0300}} \omega _{1}^{3}-3 i {g_{0003}} {g_{0300e2}} \omega _{1}^{3} \\ &{}+i {g_{0210e2}} {g_{1002}} \omega _{1}^{2} \omega _{2}+i {g_{0210}} {g_{1002e2}} \omega _{1}^{2} \omega _{2}+i {g_{0111e2}} {g_{1101}} \omega _{1}^{2} \omega _{2}+i {g_{0111}} {g_{1101e2}} \omega _{1}^{2} \omega _{2} +i {g_{0012e2}} {g_{1200}} \omega _{1}^{2} \omega _{2} \\ &{}+ i {g_{0012}} {g_{1200e2}} \omega _{1}^{2} \omega _{2}+ {g_{0202e2}} \omega _{1}^{3} \omega _{2}+12 i {g_{0102e2}} {g_{0201}} \omega _{1} \omega _{2}^{2}+12 i {g_{0102}} {g_{0201e2}} \omega _{1} \omega _{2}^{2}+12 i {g_{0003e2}} {g_{0300}} \omega _{1} \omega _{2}^{2} \\ &{}+12 i {g_{0003}} {g_{0300e2}} \omega _{1} \omega _{2}^{2}-2 i {g_{0210e2}} {g_{1002}} \omega _{1} \omega _{2}^{2}-2 i {g_{0210}} {g_{1002e2}} \omega _{1} \omega _{2}^{2} +2 i {g_{0012e2}} {g_{1200}} \omega _{1} \omega _{2}^{2} \\ &{}+ 2 i {g_{0012}} {g_{1200e2}} \omega _{1} \omega _{2}^{2}-4 i {g_{0111e2}} {g_{1101}} \omega _{2}^{3}-4 i {g_{0111}} {g_{1101e2}} \omega _{2}^{3}-4 {g_{0202e2}} \omega _{1} \omega _{2}^{3} \bigr]. \end{aligned}$$
(89)

1.3 A.3 Coefficient in \(D_{2}\)

$$\begin{aligned} D_{20} =&\frac{-i}{4 \omega _{1}^{5} \omega _{2}-17 \omega _{1}^{3} \omega _{2}^{3}+4 \omega _{1} \omega _{2}^{5}} \bigl[-12 ( {g_{1020}} {g_{2010}}+ {g_{0030}} {g_{3000}} ) \omega _{2}^{7}+4 \omega _{1}^{7} (3 {g_{0102}} {g_{0201}} +3 {g_{0003}} {g_{0300}}+i \omega _{2}{g_{0202}} ) \\ &{}- 4 \omega _{1}^{6} \omega _{2} ( {g_{0210}} {g_{1002}}-2 {g_{0201}} {g_{1011}}+ {g_{0111}} {g_{1101}} -2 {g_{0102}} {g_{1110}} +{g_{0012}} {g_{1200}}-i \omega _{2} {g_{1111}} ) \\ &{}+ \omega _{1}^{2} \omega _{2}^{5} (8 {g_{0210}} {g_{1002}}+8 {g_{0201}} {g_{1011}} -4 {g_{0111}} {g_{1101}}+8 {g_{0102}} {g_{1110}} +8 {g_{0012}} {g_{1200}}-24 {g_{0120}} {g_{2001}}+51 {g_{1020}} {g_{2010}} \\ &{} +24 {g_{0021}} {g_{2100}}+51 {g_{0030}} {g_{3000}}+4 i \omega _{2} {g_{1111}} )-\omega _{1}^{4} \omega _{2}^{3} (31 {g_{0210}} {g_{1002}}+34 {g_{0201}} {g_{1011}}-17 {g_{0111}} {g_{1101}}+34 {g_{0102}} {g_{1110}} \\ &{}+31 {g_{0012}} {g_{1200}}-6 {g_{0120}} {g_{2001}}+12 {g_{1020}} {g_{2010}}+6 {g_{0021}} {g_{2100}}+12 {g_{0030}} {g_{3000}}+17 i \omega _{2} {g_{1111}} )+\omega _{1}^{3} \omega _{2}^{4} \bigl(12 {g_{0102}} {g_{0201}} \\ &{}+12 {g_{0003}} {g_{0300}}-6 {g_{0210}} {g_{1002}}+34 {g_{1020}} {g_{1101}} -17 {g_{1011}} {g_{1110}}+6 {g_{0012}} {g_{1200}}+31 {g_{0120}} {g_{2001}} +34 {g_{0111}} {g_{2010}} \\ &{}+31 {g_{0021}} {g_{2100}}+i\omega _{2} (4 {g_{0202}}-17 {g_{2020}} ) \bigr)-\omega _{1}^{5} \omega _{2}^{2} \bigl(51 {g_{0102}} {g_{0201}}+51 {g_{0003}} {g_{0300}}-24 {g_{0210}} {g_{1002}}+8 {g_{1020}} {g_{1101}} \\ &{} -4 {g_{1011}} {g_{1110}}+24 {g_{0012}} {g_{1200}}+8 {g_{0120}} {g_{2001}}+8 {g_{0111}} {g_{2010}}+8 {g_{0021}} {g_{2100}}+i (17 {g_{0202}}-4 {g_{2020}} ) \omega _{2} \bigr) \\ &{}+4 \omega _{1} \omega _{2}^{6} (-2 {g_{1020}} {g_{1101}}+ {g_{1011}} {g_{1110}}+ {g_{0120}} {g_{2001}}-2 {g_{0111}} {g_{2010}} + {g_{0021}} {g_{2100}}+i \omega_{2} {g_{2020}} ) \bigr], \end{aligned}$$
(90)
$$\begin{aligned} D_{21} =&\frac{-i}{4 \omega _{1}^{5} \omega _{2}-17 \omega _{1}^{3} \omega _{2}^{3}+4 \omega _{1} \omega _{2}^{5}} \bigl[-12 ( {g_{1020e1}} {g_{2010}}+ {g_{1020}} {g_{2010e1}}+ {g_{0030e1}} {g_{3000}}+ {g_{0030}} {g_{3000e1}} ) \omega _{2}^{7} \\ &{}+4 \omega _{1}^{7} \bigl(3 ( {g_{0102e1}} {g_{0201}}+ {g_{0102}} {g_{0201e1}}+ {g_{0003e1}} {g_{0300}}+ {g_{0003}} {g_{0300e1}} ) +i \omega _{2} {g_{0202e1}} \bigr)- 4 \omega _{1}^{6} \omega _{2} ( {g_{0210e1}} {g_{1002}} \\ &{}+ {g_{0210}} {g_{1002e1}}-2 {g_{0201e1}} {g_{1011}}-2 {g_{0201}} {g_{1011e1}} + {g_{0111e1}} {g_{1101}}+ {g_{0111}} {g_{1101e1}}-2 {g_{0102e1}} {g_{1110}}-2 {g_{0102}} {g_{1110e1}} \\ &{}+ {g_{0012e1}} {g_{1200}} + {g_{0012}} {g_{1200e1}}-i \omega _{2}{g_{1111e1}} ) +\omega _{1}^{2} \omega _{2}^{5} (8 {g_{0210e1}} {g_{1002}}+8 {g_{0210}} {g_{1002e1}}+8 {g_{0201e1}} {g_{1011}} \\ &{}+8 {g_{0201}} {g_{1011e1}}- 4 {g_{0111e1}} {g_{1101}}-4 {g_{0111}} {g_{1101e1}}+8 {g_{0102e1}} {g_{1110}}+8 {g_{0102}} {g_{1110e1}} + 8 {g_{0012e1}} {g_{1200}}+8 {g_{0012}} {g_{1200e1}} \\ &{}-24 {g_{0120e1}} {g_{2001}}-24 {g_{0120}} {g_{2001e1}}+ 51 {g_{1020e1}} {g_{2010}}+51 {g_{1020}} {g_{2010e1}}+24 {g_{0021e1}} {g_{2100}}+24 {g_{0021}} {g_{2100e1}} \\ &{}+51 {g_{0030e1}} {g_{3000}}+51 {g_{0030}} {g_{3000e1}}+4 i {g_{1111e1}} \omega _{2} )- \omega _{1}^{4} \omega _{2}^{3} (31 {g_{0210e1}} {g_{1002}}+31 {g_{0210}} {g_{1002e1}}+34 {g_{0201e1}} {g_{1011}} \\ &{}+34 {g_{0201}} {g_{1011e1}}- 17 {g_{0111e1}} {g_{1101}}-17 {g_{0111}} {g_{1101e1}}+34 {g_{0102e1}} {g_{1110}}+34 {g_{0102}} {g_{1110e1}}+ 31 {g_{0012e1}} {g_{1200}} \\ &{}+31 {g_{0012}} {g_{1200e1}}-6 {g_{0120e1}} {g_{2001}}-6 {g_{0120}} {g_{2001e1}}+ 12 {g_{1020e1}} {g_{2010}}+12 {g_{1020}} {g_{2010e1}}+6 {g_{0021e1}} {g_{2100}} \\ &{}+6 {g_{0021}} {g_{2100e1}}+ 12 {g_{0030e1}} {g_{3000}}+12 {g_{0030}} {g_{3000e1}}+17 i \omega _{2}{g_{1111e1}} )+ \omega _{1}^{3} \omega _{2}^{4} \bigl(12 {g_{0102e1}} {g_{0201}}+12 {g_{0102}} {g_{0201e1}} \\ &{}+12 {g_{0003e1}} {g_{0300}}+12 {g_{0003}} {g_{0300e1}}- 6 {g_{0210e1}} {g_{1002}}-6 {g_{0210}} {g_{1002e1}}+34 {g_{1020e1}} {g_{1101}}+34 {g_{1020}} {g_{1101e1}} \\ &{}- 17 {g_{1011e1}} {g_{1110}}-17 {g_{1011}} {g_{1110e1}}+6 {g_{0012e1}} {g_{1200}}+6 {g_{0012}} {g_{1200e1}} + 31 {g_{0120e1}} {g_{2001}}+31 {g_{0120}} {g_{2001e1}} \\ &{}+34 {g_{0111e1}} {g_{2010}}+34 {g_{0111}} {g_{2010e1}}+ 31 {g_{0021e1}} {g_{2100}}+31 {g_{0021}} {g_{2100e1}}+i \omega _{2} (4 {g_{0202e1}}-17 {g_{2020e1}} ) \bigr) \\ &{}- \omega _{1}^{5} \omega _{2}^{2} \bigl(51 {g_{0102e1}} {g_{0201}}+51 {g_{0102}} {g_{0201e1}}+51 {g_{0003e1}} {g_{0300}}+51 {g_{0003}} {g_{0300e1}}- 24 {g_{0210e1}} {g_{1002}}-24 {g_{0210}} {g_{1002e1}} \\ &{}+8 {g_{1020e1}} {g_{1101}}+8 {g_{1020}} {g_{1101e1}}- 4 {g_{1011e1}} {g_{1110}}-4 {g_{1011}} {g_{1110e1}} +24 {g_{0012e1}} {g_{1200}}+24 {g_{0012}} {g_{1200e1}} \\ &{}+ 8 {g_{0120e1}} {g_{2001}}+8 {g_{0120}} {g_{2001e1}}+8 {g_{0111e1}} {g_{2010}}+8 {g_{0111}} {g_{2010e1}}+ 8 {g_{0021e1}} {g_{2100}}+8 {g_{0021}} {g_{2100e1}} \\ &{}+i \omega _{2} (17 {g_{0202e1}}-4 {g_{2020e1}} ) \bigr)+ 4 \omega _{1} \omega _{2}^{6} (-2 {g_{1020e1}} {g_{1101}}-2 {g_{1020}} {g_{1101e1}}+ {g_{1011e1}} {g_{1110}}+ {g_{1011}} {g_{1110e1}} \\ &{}+ {g_{0120e1}} {g_{2001}}+ {g_{0120}} {g_{2001e1}}-2 {g_{0111e1}} {g_{2010}}-2 {g_{0111}} {g_{2010e1}}+ {g_{0021e1}} {g_{2100}}+ {g_{0021}} {g_{2100e1}} +i {g_{2020e1}} \omega _{2} ) \bigr], \end{aligned}$$
(91)
$$\begin{aligned} D_{22} =&\frac{-i}{4 \omega _{1}^{5} \omega _{2}-17 \omega _{1}^{3} \omega _{2}^{3}+4 \omega _{1} \omega _{2}^{5}} \bigl[-12 ( {g_{1020A}} {g_{2010}}+ {g_{1020}} {g_{2010A}}+ {g_{0030A}} {g_{3000}}+ {g_{0030}} {g_{3000A}} ) \omega _{2}^{7} \\ &{}+ 4 \omega _{1}^{7} \bigl(3 ( {g_{0102A}} {g_{0201}}+ {g_{0102}} {g_{0201A}}+ {g_{0003A}} {g_{0300}}+ {g_{0003}} {g_{0300A}} )+i \omega _{2}{g_{0202A}} \bigr)-4 \omega _{1}^{6} \omega _{2} ( {g_{0210A}} {g_{1002}} \\ &{}+ {g_{0210}} {g_{1002A}}-2 {g_{0201A}} {g_{1011}}-2 {g_{0201}} {g_{1011A}} +{g_{0111A}} {g_{1101}}+ {g_{0111}} {g_{1101A}}-2 {g_{0102A}} {g_{1110}}-2 {g_{0102}} {g_{1110A}} \\ &{}+ {g_{0012A}} {g_{1200}} + {g_{0012}} {g_{1200A}}-i \omega _{2} {g_{1111A}} )+\omega _{1}^{2} \omega _{2}^{5} (8 {g_{0210A}} {g_{1002}}+8 {g_{0210}} {g_{1002A}}+8 {g_{0201A}} {g_{1011}} +8 {g_{0201}} {g_{1011A}} \\ &{}-4 {g_{0111A}} {g_{1101}}-4 {g_{0111}} {g_{1101A}}+8 {g_{0102A}} {g_{1110}}+8 {g_{0102}} {g_{1110A}} +8 {g_{0012A}} {g_{1200}}+8 {g_{0012}} {g_{1200A}}-24 {g_{0120A}} {g_{2001}} \\ &{}-24 {g_{0120}} {g_{2001A}}+51 {g_{1020A}} {g_{2010}} +51 {g_{1020}} {g_{2010A}}+24 {g_{0021A}} {g_{2100}}+24 {g_{0021}} {g_{2100A}} +51 {g_{0030A}} {g_{3000}} \\ &{}+51 {g_{0030}} {g_{3000A}}+4 i \omega _{2} {g_{1111A}} )-\omega _{1}^{4} \omega _{2}^{3} (31 {g_{0210A}} {g_{1002}}+31 {g_{0210}} {g_{1002A}}+34 {g_{0201A}} {g_{1011}}+34 {g_{0201}} {g_{1011A}} \\ &{} -17 {g_{0111A}} {g_{1101}}-17 {g_{0111}} {g_{1101A}}+34 {g_{0102A}} {g_{1110}}+34 {g_{0102}} {g_{1110A}}+31 {g_{0012A}} {g_{1200}}+31 {g_{0012}} {g_{1200A}} \\ &{}-6 {g_{0120A}} {g_{2001}}-6 {g_{0120}} {g_{2001A}}+ 12 {g_{1020A}} {g_{2010}}+12 {g_{1020}} {g_{2010A}}+6 {g_{0021A}} {g_{2100}}+6 {g_{0021}} {g_{2100A}}+ 12 {g_{0030A}} {g_{3000}} \\ &{}+12 {g_{0030}} {g_{3000A}}+17 i \omega _{2} {g_{1111A}} ) +\omega _{1}^{3} \omega _{2}^{4} \bigl(12 {g_{0102A}} {g_{0201}}+12 {g_{0102}} {g_{0201A}}+12 {g_{0003A}} {g_{0300}}+12 {g_{0003}} {g_{0300A}} \\ &{}-6 {g_{0210A}} {g_{1002}}-6 {g_{0210}} {g_{1002A}}+34 {g_{1020A}} {g_{1101}}+34 {g_{1020}} {g_{1101A}} -17 {g_{1011A}} {g_{1110}}-17 {g_{1011}} {g_{1110A}} \\ &{}+6 {g_{0012A}} {g_{1200}}+6 {g_{0012}} {g_{1200A}}+ 31 {g_{0120A}} {g_{2001}}+31 {g_{0120}} {g_{2001A}}+34 {g_{0111A}} {g_{2010}}+34 {g_{0111}} {g_{2010A}} \\ &{}+31 {g_{0021A}} {g_{2100}}+31 {g_{0021}} {g_{2100A}}+i \omega _{2} (4 {g_{0202A}}-17 {g_{2020A}} ) \bigr)- \omega _{1}^{5} \omega _{2}^{2} \bigl(51 {g_{0102A}} {g_{0201}}+51 {g_{0102}} {g_{0201A}} \\ &{}+51 {g_{0003A}} {g_{0300}}+51 {g_{0003}} {g_{0300A}}- 24 {g_{0210A}} {g_{1002}}-24 {g_{0210}} {g_{1002A}}+8 {g_{1020A}} {g_{1101}}+8 {g_{1020}} {g_{1101A}} \\ &{}- 4 {g_{1011A}} {g_{1110}}-4 {g_{1011}} {g_{1110A}}+24 {g_{0012A}} {g_{1200}}+24 {g_{0012}} {g_{1200A}} +8 {g_{0120A}} {g_{2001}} +8 {g_{0120}} {g_{2001A}}+8 {g_{0111A}} {g_{2010}} \\ &{}+8 {g_{0111}} {g_{2010A}}+8 {g_{0021A}} {g_{2100}}+8 {g_{0021}} {g_{2100A}} +i \omega _{2} (17 {g_{0202A}}-4 {g_{2020A}} ) \bigr)+4 \omega _{1} \omega _{2}^{6} (-2 {g_{1020A}} {g_{1101}} \\ &{}-2 {g_{1020}} {g_{1101A}}+ {g_{1011A}} {g_{1110}}+ {g_{1011}} {g_{1110A}}+{g_{0120A}} {g_{2001}}+ {g_{0120}} {g_{2001A}}-2 {g_{0111A}} {g_{2010}}-2 {g_{0111}} {g_{2010A}} \\ &{} +{g_{0021A}} {g_{2100}}+ {g_{0021}} {g_{2100A}}+i \omega _{2} {g_{2020A}} ) \bigr], \end{aligned}$$
(92)
$$\begin{aligned} D_{23} =&\frac{-i}{4 \omega _{1}^{5} \omega _{2}-17 \omega _{1}^{3} \omega _{2}^{3}+4 \omega _{1} \omega _{2}^{5}} \bigl[-12 ( {g_{1020e2}} {g_{2010}}+ {g_{1020}} {g_{2010e2}}+ {g_{0030e2}} {g_{3000}}+ {g_{0030}} {g_{3000e2}} ) \omega _{2}^{7} \\ &{}+4 \omega _{1}^{7} \bigl(3 ( {g_{0102e2}} {g_{0201}}+ {g_{0102}} {g_{0201e2}}+ {g_{0003e2}} {g_{0300}}+ {g_{0003}} {g_{0300e2}} )+ i \omega _{2}{g_{0202e2}} \bigr)-4 \omega _{1}^{6} \omega _{2} ( {g_{0210e2}} {g_{1002}} \\ &{}+ {g_{0210}} {g_{1002e2}}-2 {g_{0201e2}} {g_{1011}} -2 {g_{0201}} {g_{1011e2}}+ {g_{0111e2}} {g_{1101}}+ {g_{0111}} {g_{1101e2}}-2 {g_{0102e2}} {g_{1110}}-2 {g_{0102}} {g_{1110e2}} \\ &{} + {g_{0012e2}} {g_{1200}}+ {g_{0012}} {g_{1200e2}}-i \omega _{2} {g_{1111e2}} )+\omega _{1}^{2} \omega _{2}^{5} (8 {g_{0210e2}} {g_{1002}}+8 {g_{0210}} {g_{1002e2}} +8 {g_{0201e2}} {g_{1011}} \\ &{}+8 {g_{0201}} {g_{1011e2}}- 4 {g_{0111e2}} {g_{1101}}-4 {g_{0111}} {g_{1101e2}}+8 {g_{0102e2}} {g_{1110}} +8 {g_{0102}} {g_{1110e2}}+8 {g_{0012e2}} {g_{1200}}+8 {g_{0012}} {g_{1200e2}} \\ &{}-24 {g_{0120e2}} {g_{2001}}-24 {g_{0120}} {g_{2001e2}} + 51 {g_{1020e2}} {g_{2010}}+51 {g_{1020}} {g_{2010e2}}+24 {g_{0021e2}} {g_{2100}}+24 {g_{0021}} {g_{2100e2}} \\ &{}+51 {g_{0030e2}} {g_{3000}}+51 {g_{0030}} {g_{3000e2}}+4 i \omega _{2}{g_{1111e2}} )- \omega _{1}^{4} \omega _{2}^{3} (31 {g_{0210e2}} {g_{1002}}+31 {g_{0210}} {g_{1002e2}}+34 {g_{0201e2}} {g_{1011}} \\ &{}+34 {g_{0201}} {g_{1011e2}}- 17 {g_{0111e2}} {g_{1101}}-17 {g_{0111}} {g_{1101e2}}+34 {g_{0102e2}} {g_{1110}}+34 {g_{0102}} {g_{1110e2}}+ 31 {g_{0012e2}} {g_{1200}} \\ &{}+31 {g_{0012}} {g_{1200e2}}-6 {g_{0120e2}} {g_{2001}}-6 {g_{0120}} {g_{2001e2}}+ 12 {g_{1020e2}} {g_{2010}}+12 {g_{1020}} {g_{2010e2}}+6 {g_{0021e2}} {g_{2100}} \\ &{}+6 {g_{0021}} {g_{2100e2}}+ 12 {g_{0030e2}} {g_{3000}}+12 {g_{0030}} {g_{3000e2}}+17 i\omega _{2} {g_{1111e2}} )+\omega _{1}^{3} \omega _{2}^{4} \bigl(12 {g_{0102e2}} {g_{0201}}+12 {g_{0102}} {g_{0201e2}} \\ &{}+12 {g_{0003e2}} {g_{0300}}+12 {g_{0003}} {g_{0300e2}}- 6 {g_{0210e2}} {g_{1002}}-6 {g_{0210}} {g_{1002e2}}+34 {g_{1020e2}} {g_{1101}}+34 {g_{1020}} {g_{1101e2}} \\ &{}- 17 {g_{1011e2}} {g_{1110}} -17 {g_{1011}} {g_{1110e2}}+6 {g_{0012e2}} {g_{1200}}+6 {g_{0012}} {g_{1200e2}}+ 31 {g_{0120e2}} {g_{2001}}+31 {g_{0120}} {g_{2001e2}} \\ &{} +34 {g_{0111e2}} {g_{2010}}+34 {g_{0111}} {g_{2010e2}}+ 31 {g_{0021e2}} {g_{2100}}+31 {g_{0021}} {g_{2100e2}}+i \omega _{2} (4 {g_{0202e2}}-17 {g_{2020e2}} ) \bigr) \\ &{}- \omega _{1}^{5} \omega _{2}^{2} \bigl(51 {g_{0102e2}} {g_{0201}}+51 {g_{0102}} {g_{0201e2}}+51 {g_{0003e2}} {g_{0300}}+51 {g_{0003}} {g_{0300e2}} 24 {g_{0210e2}} {g_{1002}}-24 {g_{0210}} {g_{1002e2}} \\ &{}+8 {g_{1020e2}} {g_{1101}}+8 {g_{1020}} {g_{1101e2}}- 4 {g_{1011e2}} {g_{1110}}-4 {g_{1011}} {g_{1110e2}}+24 {g_{0012e2}} {g_{1200}}+24 {g_{0012}} {g_{1200e2}} \\ &{}+ 8 {g_{0120e2}} {g_{2001}}+8 {g_{0120}} {g_{2001e2}}+8 {g_{0111e2}} {g_{2010}}+8 {g_{0111}} {g_{2010e2}}+ 8 {g_{0021e2}} {g_{2100}}+8 {g_{0021}} {g_{2100e2}} \\ &{}+i \omega _{2} (17 {g_{0202e2}}-4 {g_{2020e2}} ) \bigr)+ 4 \omega _{1} \omega _{2}^{6} (-2 {g_{1020e2}} {g_{1101}}-2 {g_{1020}} {g_{1101e2}}+ {g_{1011e2}} {g_{1110}}+ {g_{1011}} {g_{1110e2}} \\ &{}+ {g_{0120e2}} {g_{2001}}+ {g_{0120}} {g_{2001e2}}-2 {g_{0111e2}} {g_{2010}}-2 {g_{0111}} {g_{2010e2}}+ {g_{0021e2}} {g_{2100}}+ {g_{0021}} {g_{2100e2}}+i \omega _{2} {g_{2020e2}} ) \bigr]. \end{aligned}$$
(93)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishor, R., Kushvah, B.S. Normalization of Hamiltonian and nonlinear stability of the triangular equilibrium points in non-resonance case with perturbations. Astrophys Space Sci 362, 156 (2017). https://doi.org/10.1007/s10509-017-3132-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-017-3132-x

Keywords

Navigation