Skip to main content
Log in

Normalization of Hamiltonian and Nonlinear Stability of Triangular Equilibrium Points in the Photogravitational Restricted Three Body Problem with P–R Drag in Non-resonance Case

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

Normal forms of Hamiltonian are very important to analyze the nonlinear stability of a dynamical system in the vicinity of invariant objects. This paper presents the normalization of Hamiltonian and the analysis of nonlinear stability of triangular equilibrium points in non-resonance case, in the photogravitational restricted three body problem under the influence of radiation pressures and P–R drags of the radiating primaries. The Hamiltonian of the system is normalized up to fourth order through Lie transform method and then to apply the Arnold–Moser theorem, Birkhoff normal form of the Hamiltonian is computed followed by nonlinear stability of the equilibrium points is examined. Similar to the case of classical problem, we have found that in the presence of assumed perturbations, there always exists one value of mass parameter within the stability range at which the discriminant \(D_4\) vanish, consequently, Arnold–Moser theorem fails, which infer that triangular equilibrium points are unstable in nonlinear sense within the stability range. Present analysis is limited up to linear effect of the perturbations, which will be helpful to study the more generalized problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alvarez-Ramírez, M., Skea, J.E.F., Stuchi, T.J.: Nonlinear stability analysis in a equilateral restricted four-body problem. Ap&SS 358, 3 (2015). https://doi.org/10.1007/s10509-015-2333-4

    Article  Google Scholar 

  2. Birkhoff, G.D.: Dynamical System. American Mathematical Society Colloquium Publications, New York (1927)

    Book  Google Scholar 

  3. Celletti, A.: Stability and Chaos in Celestial Mechanics. Springer, Berlin (2010)

    Book  Google Scholar 

  4. Chernikov, Y.A.: The photogravitational restricted three-body problem. Sov. Astron. 14, 176 (1970)

    MathSciNet  Google Scholar 

  5. Coppola, V.T., Rand, R.H.: Computer algebra, Lie transforms and the nonlinear stability of \(\text{ L }_{4}\). Celest. Mech. 45, 103–104 (1988). https://doi.org/10.1007/BF01228988

    Article  Google Scholar 

  6. Coppola, V.T., Rand, R.H.: Computer algebra implementation of Lie transforms for Hamiltonian systems: application to the nonlinear stability of \(\text{ L }_{4}\). Zeitschrift Angewandte Mathematik und Mechanik 69, 275–284 (1989). https://doi.org/10.1002/zamm.19890690903

    Article  MathSciNet  MATH  Google Scholar 

  7. Coppola, V.T., Rand, R.H.: Computer algebra, Lie transforms and the nonlinear stability of \(\text{ L }_{4}\). Celest. Mech. 45, 103–103 (1989)

    Article  Google Scholar 

  8. Deprit, A.: Cannanical transformations depending on a parameter. Celest. Mech. 1, 1–31 (1969)

    Google Scholar 

  9. Deprit, A., Deprit-Bartholome, A.: Stability of the triangular Lagrangian points. AJ 72, 173–173 (1967). https://doi.org/10.1086/110213

    Article  MATH  Google Scholar 

  10. Gómez, G., Jorba, A., Masdemont, A., Simó, C.: Study of the transfer between halo orbits. Acta Astronaut. 43, 493–520 (1998). https://doi.org/10.1016/S0094-5765(98)00177-5

    Article  Google Scholar 

  11. Goździewski, K.: Nonlinear stability of the Lagrangian libration points in the Chermnykh problem. Celest. Mech. Dyn. Astron. 70, 41–58 (1998). https://doi.org/10.1023/A:1008250207046

    Article  MathSciNet  MATH  Google Scholar 

  12. Idrisi, M.J., Ullah, M.S.: Non-collinear libration points in er3bp with albedo effect and oblateness. J. Astrophys. Astron. 39(28), 1 (2018)

    Google Scholar 

  13. Ishwar, B.: Non-linear stability in the generalized restricted three-body problem. Celest. Mech. Dyn. Astron. 65, 253–289 (1997)

    Article  MathSciNet  Google Scholar 

  14. Ishwar, B., Sharma, J.P.: Non-linear stability in photogravitational non-planar restricted three body problem with oblate smaller primary. Ap&SS 337, 563–571 (2012). https://doi.org/10.1007/s10509-011-0868-6. arXiv:1109.4206

    Article  MATH  Google Scholar 

  15. Jorba, A.: A methodology for the numerical computation of normal forms, centre manifolds and first integrals of Hamiltonian systems. Exp. Math. 8(2), 155–195 (1999)

    Article  MathSciNet  Google Scholar 

  16. Jorba, À., Masdemont, J.: Dynamics in the center manifold of the collinear points of the restricted three body problem. Phys. D Nonlinear Phenom. 132, 189–213 (1999). https://doi.org/10.1016/S0167-2789(99)00042-1

    Article  MathSciNet  MATH  Google Scholar 

  17. Jorba, À., Villanueva, J.: Numerical computation of normal forms around some periodic orbits of the restricted three-body problem. Phys. D Nonlinear Phenom. 114, 197–229 (1998). https://doi.org/10.1016/S0167-2789(97)00194-2

    Article  MathSciNet  MATH  Google Scholar 

  18. Kishor, R., Kushvah, B.S.: Linear stability and resonances in the generalized photogravitational Chermnykh-like problem with a disc. MNRAS 436, 1741–1749 (2013). https://doi.org/10.1093/mnras/stt1692

    Article  Google Scholar 

  19. Kishor, R., Kushvah, B.S.: Normalization of Hamiltonian and nonlinear stability of the triangular equilibrium points in non-resonance case with perturbations. Ap&SS 362, 156 (2017). https://doi.org/10.1007/s10509-017-3132-x

    Article  MathSciNet  Google Scholar 

  20. Kushvah, B.S., Sharma, J.P., Ishwar, B.: Nonlinear stability in the generalised photogravitational restricted three body problem with Poynting–Robertson drag. Ap&SS 312, 279–293 (2007). https://doi.org/10.1007/s10509-007-9688-0. arXiv:math/0609543

    Article  MATH  Google Scholar 

  21. Kushvah, B.S., Kishor, R., Dolas, U.: Existence of equilibrium points and their linear stability in the generalized photogravitational Chermnykh-like problem with power-law profile. Ap&SS 337, 115–127 (2012). https://doi.org/10.1007/s10509-011-0857-9. arXiv:1107.5390

    Article  MATH  Google Scholar 

  22. Lhotka, C., Celletti, A.: The effect of Poynting–Robertson drag on the triangular Lagrangian points. Icarus 250, 249–261 (2015). https://doi.org/10.1016/j.icarus.2014.11.039. arXiv:1412.1630

    Article  Google Scholar 

  23. Markeev, A.P., Sokolskii, A.G.: On the stability of periodic motions which are close to Lagrangian solutions. Sov. Ast. 21, 507–512 (1977)

    Google Scholar 

  24. McKenzie, R., Szebehely, V.: Non-linear stability around the triangular libration points. Celest. Mech. 23, 223–229 (1981). https://doi.org/10.1007/BF01230727

    Article  Google Scholar 

  25. Meyer, K.R., Schmidt, D.S.: The stability of the Lagrange triangular point and a theorem of Arnold. J. Differ. Equ. 62, 222–236 (1986). https://doi.org/10.1016/0022-0396(86)90098-7

    Article  MathSciNet  MATH  Google Scholar 

  26. Meyer, K.R., Hall, G.R., Offin, D.C.: Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. Springer, New York (1992). https://doi.org/10.1007/2F978-0-387-09724-4

    Book  MATH  Google Scholar 

  27. Mishra, V.K., Ishwar, B.: Diagolization of Hamiltonian in the photogravitational restricted three body problem with P-R drag. Adv. Astrophys. 1, 3 (2016)

    Article  Google Scholar 

  28. Murray, C.D.: Dynamical effects of drag in the circular restricted three-body problem. 1: location and stability of the Lagrangian equilibrium points. Icarus 112, 465–484 (1994). https://doi.org/10.1006/icar.1994.1198

    Article  Google Scholar 

  29. Poincaré, H.: Mémoire sur les courbes définies par une équation différentielle, I. J. Math. Pures Appl. 7, 375–422 (1881)

    MATH  Google Scholar 

  30. Poynting, J.H.: Radiation in the solar system: its effect on temperature and its pressure on small bodies. MNRAS 64, A1 (1903)

    Article  Google Scholar 

  31. Ragos, O., Zafiropoulos, F.A.: A numerical study of the influence of the Poynting–Robertson effect on the equilibrium points of the photogravitational restricted three-body problem. I. Coplanar case. A&A 300, 568 (1995)

    Google Scholar 

  32. Ragos, O., Zagouras, C.G.: On the existence of the ‘out of plane’ equilibrium points in the photogravitational restricted three-body problem. Ap&SS 209, 267–271 (1993). https://doi.org/10.1007/BF00627446

    Article  MATH  Google Scholar 

  33. Raj, M.X.J., Ishwar, B.: Diagolization of Hamiltonian in the photogravitational restricted three body problem with P-R drag. Int. J. Adv. Astron. 5, 2 (2017). https://doi.org/10.14419/ijaa.v5i2.7931

    Article  Google Scholar 

  34. Robertson, H.P.: Dynamical effects of radiation in the solar system. MNRAS 97, 423 (1937)

    Article  Google Scholar 

  35. Schuerman, D.W.: The restricted three-body problem including radiation pressure. ApJ 238, 337–342 (1980). https://doi.org/10.1086/157989

    Article  MathSciNet  Google Scholar 

  36. Simó, C., Gómez, G., Jorba, A., Masdemont, J.: The bicircular model near the triangular libration points of the RTBP. In: Roy, A.E., Steves, B.A. (eds.) NATO Advanced Science Institutes (ASI) Series B, NATO Advanced Science Institutes (ASI) Series B, vol. 336, pp. 343–370 (1995)

    Chapter  Google Scholar 

  37. Singh, J., Omale, S.O.: Combined effect of Stokes drag, oblateness and radiation pressure on the existence and stability of equilibrium points in the restricted four-body problem. Ap&SS 364, 6 (2019). https://doi.org/10.1007/s10509-019-3494-3

    Article  MathSciNet  Google Scholar 

  38. Subba Rao, P.V., Krishan Sharma, R.: Effect of oblateness on the non-linear stability of in the restricted three-body problem. Celest. Mech. Dyn. Astron. 65, 291–312 (1997)

    Article  MathSciNet  Google Scholar 

  39. Ushiki, S.: Normal forms for singularties of vector fields. Jpn. J. Appl. Math. 1, 1–37 (1984)

    Article  MathSciNet  Google Scholar 

  40. Wolfram, S.: The Mathematica Book. Wolfram Media (2003)

Download references

Acknowledgements

We all are thankful to the Inter-University Center for Astronomy and Astrophysics (IUCAA), Pune for providing references through its library and computation facility in addition to local hospitality. First author is also thankful to UGC, New Delhi for providing financial support through UGC Start-up Research Grant No.-F.30-356/2017(BSR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Kishor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishor, R., Raj, M.X.J. & Ishwar, B. Normalization of Hamiltonian and Nonlinear Stability of Triangular Equilibrium Points in the Photogravitational Restricted Three Body Problem with P–R Drag in Non-resonance Case. Qual. Theory Dyn. Syst. 18, 1055–1075 (2019). https://doi.org/10.1007/s12346-019-00327-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-019-00327-7

Keywords

Navigation