Skip to main content
Log in

Homing in for New Year: impact parameters and pre-impact orbital evolution of meteoroid 2014 AA

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

On 2008 October 7, small asteroid \(2008~\mbox{TC}_{3}\) turned itself into the parent body of the first meteor ever to be predicted before entering the Earth’s atmosphere. Over five years later, the 2014 AA event became the second instance of such an occurrence. The uncertainties associated with the pre-impact orbit of \(2008~\mbox{TC}_{3}\) are relatively small because thousands of observations were made during the hours preceding the actual meteor airburst. In sharp contrast, 2014 AA was only observed seven times before impact and consequently its trajectory is somewhat uncertain. Here, we present a recalculation of the impact parameters—location and timing—of this meteor based on infrasound recordings. The new values—\((\lambda_{\mathrm{impact}}, \phi_{\mathrm{impact}}, t_{\mathrm{impact}}) = (-44^{\circ }, +11^{\circ }, 2456659.618~\mbox{JD UTC})\)—and their uncertainties together with Monte Carlo and \(N\)-body techniques, are applied to obtain an independent determination of the pre-impact orbit of 2014 AA: \(a=1.1623~\mbox{AU}\), \(e=0.2116\), \(i=1.\hspace {-0.3em}^{\circ}4156\), \(\varOmega =101 .\hspace {-0.3em}^{\circ}6086\), and \(\omega=52.\hspace {-0.3em}^{\circ}3393\). Our orbital solution is used to investigate the possible presence of known near-Earth objects (NEOs) moving in similar orbits. Among the objects singled out by this search, the largest is \(2013~\mbox{HO}_{11}\) with an absolute magnitude of 23.0 (diameter 75–169 m) and a MOID of 0.006 AU. Prior to impact, 2014 AA was subjected to a web of overlapping secular resonances and it followed a path similar to those of \(2011~\mbox{GJ}_{3}\), \(2011~\mbox{JV}_{10}\), \(2012~\mbox{DJ}_{54}\), and \(2013~\mbox{NJ}_{4}\). NEOs in this transient group have their orbits controlled by close encounters with the Earth–Moon system at perihelion and Mars at aphelion, perhaps constituting a dynamical family. Extensive comparison with other studies is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Notes

  1. The orbit available from the Minor Planet Center is: \(a = 1.1605495~\mbox{AU}\), \(e = 0.2092087\), \(i = 1.\hspace {-0.3em}^{\circ}39894\), \(\varOmega = 101.\hspace {-0.3em}^{\circ}70409\), and \(\omega = 52.\hspace {-0.3em}^{\circ}02425\), referred to the epoch 2456600.5 JD TDB.

  2. The orbit available from NEODyS-2 is: \(a = 1.17\pm0.03~\mbox{AU}\), \(e = 0.22\pm0.03\), \(i = 1.\hspace {-0.3em}^{\circ}4\pm0.\hspace {-0.3em}^{\circ}2\), \(\varOmega = 101.\hspace {-0.3em}^{\circ}57\pm0.\hspace {-0.3em}^{\circ}12\), and \(\omega = 52^{\circ }\pm1^{\circ }\), referred to the epoch 2456658.3 JD TDB.

  3. http://neo.jpl.nasa.gov/news/news182.html.

  4. http://neo.jpl.nasa.gov/news/news182a.html.

  5. http://neo.jpl.nasa.gov/risks/.

  6. http://neo.jpl.nasa.gov/risks/a29075.html.

  7. http://neo.jpl.nasa.gov/fireballs/.

  8. http://neo.jpl.nasa.gov/news/2008tc3.html.

  9. http://ssd.jpl.nasa.gov/?horizons.

  10. http://www.ast.cam.ac.uk/~sverre/web/pages/nbody.htm.

  11. http://www.minorplanetcenter.net/db_search.

  12. http://www.minorplanetcenter.net/db_search/show_object?object_id=2014+AA.

  13. http://newton.dm.unipi.it/neodys.

  14. http://newsroom.ctbto.org/2014/04/24/ctbto-detected-26-major-asteroid-impacts-in-earths-atmosphere-since-2000/.

  15. http://ssd.jpl.nasa.gov/sbdb.cgi.

  16. http://www.phas.ubc.ca/~sarahg/n1model/.

  17. http://neo.jpl.nasa.gov/risk/2012dj54.html.

  18. http://neo.jpl.nasa.gov/risk/2009sh1.html.

References

  • Aarseth, S.J.: Gravitational N-Body Simulations p. 27. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  • Adamo, D.R.: Horizons Newsletter, June issue, p. 64 (2011). https://info.aiaa.org/Regions/SC/Houston/Newsletters/Horizons%202010-2014/2011_06_final.pdf

  • Agarwal, J., Jewitt, D., Weaver, H., Mutchler, M., Larson, S.: Astron. J. 151, 12 (2016)

    Article  ADS  Google Scholar 

  • Avdyushev, V.A., Banschikova, M.A.: Sol. Syst. Res. 41, 413 (2007)

    Article  ADS  Google Scholar 

  • Baluev, R.V., Kholshevnikov, K.V.: Celest. Mech. Dyn. Astron. 91, 287 (2005)

    Article  ADS  Google Scholar 

  • Benitez, F., Gallardo, T.: Celest. Mech. Dyn. Astron. 101, 289 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  • Boekholt, T., Portegies Zwart, S.: Comput. Astrophys. Cosmol. 2, 2 (2015)

    Article  ADS  Google Scholar 

  • Bordovitsyna, T., Avdyushev, V., Chernitsov, A.: Celest. Mech. Dyn. Astron. 80, 227 (2001)

    Article  ADS  Google Scholar 

  • Borovička, J., Charvát, Z.: Astron. Astrophys. 507, 1015 (2009)

    Article  ADS  Google Scholar 

  • Bottke, W.F. Jr., Vokrouhlický, D., Rubincam, D.P., Nesvorný, D.: Annu. Rev. Earth Planet. Sci. 34, 157 (2006)

    Article  ADS  Google Scholar 

  • Box, G.E.P., Muller, M.E.: Ann. Math. Stat. 29, 610 (1958)

    Article  Google Scholar 

  • Brachet, N., Brown, D., Le Bras, R., Mialle, P., Coyne, J.: In: Le Pichon, A., Blanc, E., Hauchecorne, A. (eds.) Infrasound Monitoring for Atmospheric Studies, p. 77. Springer, Berlin (2010)

    Chapter  Google Scholar 

  • Brown, P.: In: Muinonen, K., Penttilä, A., Granvik, M., Virkki, A., Fedorets, G., Wilkman, O., Kohout, T. (eds.) Asteroids, Comets, Meteors—Book of Abstracts, Helsinki, Finland, p. 84 (2014)

    Google Scholar 

  • Brown, P., Spalding, R.E., ReVelle, D.O., Tagliaferri, E., Worden, S.P.: Nature 420, 294 (2002)

    Article  ADS  Google Scholar 

  • Brown, P.G., et al.: Nature 503, 238 (2013)

    ADS  Google Scholar 

  • Brož, M., Vokrouhlický, D.: Mon. Not. R. Astron. Soc. 390, 715 (2008)

    Article  ADS  Google Scholar 

  • Čapek, D., Vokrouhlický, D.: Astron. Astrophys. 519, A75 (2010)

    Article  Google Scholar 

  • Ceplecha, Z.: Bull. Astron. Inst. Czechoslov. 38, 222 (1987)

    ADS  Google Scholar 

  • Chesley, S.R., Milani, A.: Bull. Am. Astron. Soc. 31, 1117 (1999)

    ADS  Google Scholar 

  • Chesley, S.R., Farnocchia, D., Brown, P., Chodas, P.W.: In: AAS/Division for Planetary Sciences Meeting Abstracts, vol. 46, p. 403.03 (2014)

    Google Scholar 

  • Chesley, S.R., Farnocchia, D., Brown, P., Chodas, P.W.: In: Proceedings of the Aerospace Conference, 2015 IEEE, 7–14 March 2015, Big Sky, MT (2015). doi:10.1109/AERO.2015.7119148

    Google Scholar 

  • Chodas, P.W., Yeomans, D.K.: In: Noll, K.S., Weaver, H.A., Feldman, P.D. (eds.) IAU Colloq. 156: The Collision of Comet Shoemaker-Levy 9 and Jupiter, p. 1. Cambridge University Press, Cambridge (1996)

    Chapter  Google Scholar 

  • Chodas, P., Chesley, S., Yeomans, D.: In: AAS/Division for Planetary Sciences Meeting Abstracts vol. 41, p. 9.05 (2009)

    Google Scholar 

  • de la Fuente Marcos, C., de la Fuente Marcos, R.: Mon. Not. R. Astron. Soc. 427, 728 (2012)

    Article  ADS  Google Scholar 

  • de la Fuente Marcos, C., de la Fuente Marcos, R.: Mon. Not. R. Astron. Soc. 436, L15 (2013)

    Article  ADS  Google Scholar 

  • de la Fuente Marcos, C., de la Fuente Marcos, R.: Mon. Not. R. Astron. Soc. 443, L39 (2014)

    Article  ADS  Google Scholar 

  • de la Fuente Marcos, C., de la Fuente Marcos, R.: Mon. Not. R. Astron. Soc. 446, L31 (2015a)

    Article  ADS  Google Scholar 

  • de la Fuente Marcos, C., de la Fuente Marcos, R.: Mon. Not. R. Astron. Soc. 453, 1288 (2015b)

    Article  ADS  Google Scholar 

  • de la Fuente Marcos, C., de la Fuente Marcos, R., Aarseth, S.J.: Astrophys. J. 812, 26 (2015)

    Article  ADS  Google Scholar 

  • de la Fuente Marcos, C., de la Fuente Marcos, R.: Mon. Not. R. Astron. Soc. 456, 2946 (2016)

    Article  ADS  Google Scholar 

  • Denneau, L., et al.: Icarus 245, 1 (2015)

    Article  ADS  Google Scholar 

  • Dmitriev, V., Lupovka, V., Gritsevich, M.: Planet. Space Sci. 117, 223 (2015)

    Article  ADS  Google Scholar 

  • Dorschner, J.: Astron. Nachr. 295, 141 (1974)

    Article  ADS  Google Scholar 

  • Drahus, M., Waniak, W., Tendulkar, S., Agarwal, J., Jewitt, D., Sheppard, S.S.: Astrophys. J. 802, L8 (2015)

    Article  ADS  Google Scholar 

  • Drummond, J.D.: Icarus 45, 545 (1981)

    Article  ADS  Google Scholar 

  • Eastman, J., Siverd, R., Gaudi, B.S.: Publ. Astron. Soc. Pac. 122, 935 (2010)

    Article  ADS  Google Scholar 

  • Farnocchia, D., Chesley, S.R., Vokrouhlický, D., Milani, A., Spoto, F., Bottke, W.F.: Icarus 224, 1 (2013)

    Article  ADS  Google Scholar 

  • Farnocchia, D., Chesley, S.R., Micheli, M.: Icarus 258, 18 (2015)

    Article  ADS  Google Scholar 

  • Farnocchia, D., Chesley, S.R., Brown, P.G., Chodas, P.W.: Icarus 274, 327 (2016)

    Article  ADS  Google Scholar 

  • Foglia, S., Masi, G.: Minor Planet Bull. 31, 100 (2004)

    ADS  Google Scholar 

  • Giorgini, J.D., et al.: Bull. Am. Astron. Soc. 28, 1158 (1996)

    ADS  Google Scholar 

  • Giorgini, J.D., Yeomans, D.K.: On-Line System Provides Accurate Ephemeris and Related Data p. 48 (1999). NASA TECH BRIEFS, NPO-20416

    Google Scholar 

  • Giorgini, J.D., Chodas, P.W., Yeomans, D.K.: In: Orbit Uncertainty and Close-Approach Analysis Capabilities of the Horizons On-Line Ephemeris System, 33rd AAS/DPS Meeting, New Orleans, LA (2001)

    Google Scholar 

  • Green, D.N., Bowers, D.: J. Geophys. Res. 115, D18116 (2010)

    Article  ADS  Google Scholar 

  • Greenstreet, S., Ngo, H., Gladman, B.: Icarus 217, 355 (2012)

    Article  ADS  Google Scholar 

  • Gronchi, G.: Celest. Mech. Dyn. Astron. 93, 295 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • Hirayama, K.: Astron. J. 31, 185 (1918)

    Article  ADS  Google Scholar 

  • Ito, T., Tanikawa, K.: Icarus 139, 336 (1999)

    Article  ADS  Google Scholar 

  • Ito, T., Tanikawa, K.: Mon. Not. R. Astron. Soc. 336, 483 (2002)

    Article  ADS  Google Scholar 

  • Jenniskens, P.: Meteor Showers and Their Parent Comets. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  • Jenniskens, P.: In: Muinonen, K., Penttilä, A., Granvik, M., Virkki, A., Fedorets, G., Wilkman, O., Kohout, T. (eds.) Asteroids, Comets, Meteors—Book of Abstracts, Helsinki, Finland, p. 263 (2014)

    Google Scholar 

  • Jenniskens, P., et al.: Nature 458, 485 (2009)

    Article  ADS  Google Scholar 

  • Jewitt, D.: Astron. J. 143, 66 (2012)

    Article  ADS  Google Scholar 

  • Jewitt, D., Hsieh, H., Agarwal, J.: In: Michel, P., DeMeo, F.E., Bottke, W.F. Jr. (eds.) Asteroids IV. University of Arizona Space Science Series, p. 221. University of Arizona Press, Tucson (2015)

    Google Scholar 

  • Jopek, T.J., Williams, I.P.: Mon. Not. R. Astron. Soc. 430, 2377 (2013)

    Article  ADS  Google Scholar 

  • Jopek, T.J., Kanuchová, Z.: In: Jopek, T.J., Rietmeijer, F.J.M., Watanabe, J., Williams, I.P. (eds.) The Meteoroids 2013, p. 353. Adam Mickiewicz University Press, Poznan (2014)

    Google Scholar 

  • Kowalski, R.A., et al.: MPEC 2011-J37 (2011)

  • Kowalski, R.A., et al.: MPEC 2014-A02 (2014)

  • Kozai, Y.: Astron. J. 67, 591 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  • Kozubal, M.J., Gasdia, F.W., Dantowitz, R.F., Scheirich, P., Harris, A.W.: Meteorit. Planet. Sci. 46, 534 (2011)

    Article  ADS  Google Scholar 

  • Le Pichon, A., Ceranna, L., Vergoz, J.: J. Geophys. Res. 117, D05121 (2012)

    Article  ADS  Google Scholar 

  • Le Pichon, A., et al.: Geophys. Res. Lett. 40, 3732 (2013)

    Article  ADS  Google Scholar 

  • Lindblad, B.A.: In: Kozai, Y., Binzel, R.P., Hirayama, T. (eds.) Seventy-Five Years of Hirayama Asteroid Families: The Role of Collisions in the Solar System History. ASP Conference Series, vol. 63, p. 62 (1994)

    Google Scholar 

  • Lindblad, B.A., Southworth, R.B.: In: Gehrels, T. (ed.) Physical Studies of Minor Planets, p. 337. NASA, Washington (1971). NASA SP-267

    Google Scholar 

  • Makino, J.: Astrophys. J. 369, 200 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  • Maxwell, A.D.: Astron. J. 42, 13 (1932)

    Article  ADS  Google Scholar 

  • McMillan, R.S., et al.: MPEC 2011-G32 (2011)

  • Metropolis, N., Ulam, S.: J. Am. Stat. Assoc. 44, 335 (1949)

    Article  MathSciNet  Google Scholar 

  • Michel, P.: Astron. Astrophys. 328, L5 (1997)

    ADS  Google Scholar 

  • Michel, P., Thomas, F.: Astron. Astrophys. 307, 310 (1996)

    ADS  Google Scholar 

  • Micheli, M., Tholen, D.J., Lister, T., Primak, N., Schultz, A., Watters, S., Thiel, J., Goggia, T.: MPEC 2012-D104 (2012)

  • Milani, A., Carpino, M., Hahn, G., Nobili, A.M.: Icarus 78, 212 (1989)

    Article  ADS  Google Scholar 

  • Milani, A., Knežević, Z.: Celest. Mech. Dyn. Astron. 92, 1 (2005)

    Article  ADS  Google Scholar 

  • Montenbruck, O., Pfleger, T.: Astronomy on the Personal Computer, 4th edn. Springer, Heidelberg (2000)

    Book  Google Scholar 

  • Murray, C.D., Dermott, S.F.: Solar System Dynamics p. 97. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  • Namouni, F.: Icarus 137, 293 (1999)

    Article  ADS  Google Scholar 

  • Olech, A., et al.: Mon. Not. R. Astron. Soc. 454, 2965 (2015)

    Article  ADS  Google Scholar 

  • Oszkiewicz, D., Muinonen, K., Virtanen, J., Granvik, M., Bowell, E.: Planet. Space Sci. 73, 30 (2012)

    Article  ADS  Google Scholar 

  • Pilger, C., Ceranna, L., Ross, J.O., Le Pichon, A., Mialle, P., Garcés, M.A.: Geophys. Res. Lett. 42, 2523 (2015)

    Article  ADS  Google Scholar 

  • Popova, O.P., et al.: Science 342, 1069 (2013)

    Article  ADS  Google Scholar 

  • Porubcan, V., Kornoš, L., Williams, I.P.: Contributions of the Astronomical Observatory Skalnaté, vol. 36, p. 103 (2006)

    Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  • Richardson, D.C., Bottke, W.F., Love, S.G.: Icarus 134, 47 (1998)

    Article  ADS  Google Scholar 

  • Ries, J.G., et al.: MPEC 2013-H34 (2013)

  • Ryan, E.V.: Annu. Rev. Earth Planet. Sci. 28, 367 (2000)

    Article  ADS  Google Scholar 

  • Sariya, D.P., Yadav, R.K.S.: Astron. Astrophys. 584, A59 (2015)

    Article  ADS  Google Scholar 

  • Scholz, R.-D., et al.: Astron. Astrophys. 137, 305 (1999)

    ADS  Google Scholar 

  • Schunová, E., Granvik, M., Jedicke, R., Gronchi, G., Wainscoat, R., Abe, S.: Icarus 220, 1050 (2012)

    Article  ADS  Google Scholar 

  • Schunová, E., Jedicke, R., Walsh, K.J., Granvik, M., Wainscoat, R.J., Haghighipour, N.: Icarus 238, 156 (2014)

    Article  ADS  Google Scholar 

  • Šegan, S., Milisavljević, S., Marčeta, D.: Acta Astron. 61, 275 (2011)

    ADS  Google Scholar 

  • Sitarski, G.: Acta Astron. 48, 547 (1998)

    ADS  Google Scholar 

  • Sitarski, G.: Acta Astron. 49, 421 (1999)

    ADS  Google Scholar 

  • Sitarski, G.: Acta Astron. 56, 283 (2006)

    ADS  Google Scholar 

  • Smart, W.M.: Textbook on Spherical Astronomy, 6th edn. p. 204. Cambridge University Press, Cambridge (1977)

    Google Scholar 

  • Southworth, R.B., Hawkins, G.S.: Smithson. Contrib. Astrophys. 7, 261 (1963)

    ADS  Google Scholar 

  • Standish, E.M.: JPL Planetary and Lunar Ephemerides. NASA, Washington (1998). DE405/LE405. Interoffice Memo. 312.F-98-048

    Google Scholar 

  • Tanikawa, K., Ito, T.: Publ. Astron. Soc. Jpn. 59, 989 (2007)

    Article  ADS  Google Scholar 

  • Tóth, J., Vereš, P., Kornoš, L.: Mon. Not. R. Astron. Soc. 415, 1527 (2011)

    Article  ADS  Google Scholar 

  • Trigo-Rodríguez, J.M., et al.: Mon. Not. R. Astron. Soc. 382, 1933 (2007)

    Article  ADS  Google Scholar 

  • Unnikrishnan, R., Lalonde, J.-F., Vandapel, N., Hebert, M.: Int. J. Comput. Geom. Appl. 20, 543 (2010)

    Article  MathSciNet  Google Scholar 

  • Valsecchi, G.B., Jopek, T.J., Froeschlé, C.: Mon. Not. R. Astron. Soc. 304, 743 (1999)

    Article  ADS  Google Scholar 

  • Vokrouhlický, D., Farnocchia, D., Čapek, D., Chesley, S.R., Pravec, P., Scheirich, P., Müller, T.G.: Icarus 252, 277 (2015)

    Article  ADS  Google Scholar 

  • Wainscoat, R.J., et al.: MPEC 2013-N13 (2013)

  • Wall, J.V., Jenkins, C.R.: Practical Statistics for Astronomers, 2nd edn. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  • Walsh, K.J., Richardson, D.C., Michel, P.: Nature 454, 188 (2008)

    Article  ADS  Google Scholar 

  • Wiśniowski, T., Rickman, H.: Acta Astron. 63, 293 (2013)

    ADS  Google Scholar 

  • Zappalà, V., Cellino, A., Farinella, P., Knežević, Z.: Astron. J. 100, 2030 (1990)

    Article  ADS  Google Scholar 

  • Zappalà, V., Cellino, A., Farinella, P., Milani, A.: Astron. J. 107, 772 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the referee, T.J. Jopek, for his constructive, detailed and very helpful reports, S.J. Aarseth for providing one of the codes used in this research and for comments on early versions of this work, S. R. Chesley for providing his results on the pre-impact orbit of 2014 AA prior to publication, D. Farnocchia for his input on early versions of this work, J.D. Giorgini for providing the details of the orbit computed by the JPL, Bill Gray for sharing the early results of his impact calculations, and S.R. Proud for sharing the results of his analysis of some weather satellite imagery. This work was partially supported by the Spanish ‘Comunidad de Madrid’ under grant CAM S2009/ESP-1496. Some of the calculations discussed in this paper were completed on the ‘Servidor Central de Cálculo’ of the Universidad Complutense de Madrid. This research has made use of NASA’s Astrophysics Data System, the ASTRO-PH e-print server, the MPC data server, and the NEODyS information service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. de la Fuente Marcos.

Appendices

Appendix A: Orbital elements of the Earth around the time of impact

Chesley et al. (2015) have released the impact time and the hypocentre location for the 2014 AA impact (see their Table 1) as included in the REB of the IDC of the CTBTO for 2014 January 2. The impact time was 2014 January 2 at 3:05:25 UTC with an uncertainty of 632 s. The impact location coordinates were latitude (\({^{\circ }}\mbox{N}\)) equal to \(+14.\hspace {-0.3em}^{\circ}6326\) and longitude (\({^{\circ }}\mbox{E}\)) of \(-43.\hspace {-0.3em}^{\circ}4194\). Therefore, the actual impact with the atmosphere took place at epoch 2456659.629537 Julian Date, Barycentric Dynamical Time. The uncertainty is about 10 minutes. The osculating orbital elements of the Earth within \(\pm150~\mbox{s}\) of the detection are given in Table 10. These values have been computed by the SSDG, Horizons On-Line Ephemeris System.

Table 10 Orbital elements of the Earth around JD 2456659.629537 = A.D. 2014-Jan-02 03:06:32.00 TDB (Source: JPL Horizons system). Data as of 2016 April 12

Appendix B: Cartesian state vectors at epoch JD TDB 2456658.628472222 = A.D. 2014-Jan-1 03:05:00.0000 TDB

In order to facilitate verification of our results by other astrodynamicists, we show in Table 11 the Cartesian state vectors of the physical model used in all the calculations presented here. These values have been computed by the SSDG, Horizons On-Line Ephemeris System at epoch JD TDB 2456658.628472222 = A.D. 2014-Jan-01 03:05:00.0000 TDB, this instant is considered as \(t = 0\) across this work unless explicitly stated. Positions and velocities are referred to the barycentre of the Solar System.

Table 11 Cartesian state vectors at epoch JD TDB 2456658.628472222 that corresponds to 03:05:00.0000 TDB on 2014 January 1 (Source: JPL Horizons system, data as of 2016 April 12). The sample Cartesian vector for 2014 AA corresponds to the nominal orbit in Table 5

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Fuente Marcos, C., de la Fuente Marcos, R. & Mialle, P. Homing in for New Year: impact parameters and pre-impact orbital evolution of meteoroid 2014 AA. Astrophys Space Sci 361, 358 (2016). https://doi.org/10.1007/s10509-016-2945-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-016-2945-3

Keywords

Navigation