Skip to main content
Log in

The relativistic factor in the orbital dynamics of point masses

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

There is a growing population of relativistically relevant minor bodies in the Solar System and a growing population of massive extrasolar planets with orbits very close to the central star where relativistic effects should have some signature. Our purpose is to review how general relativity affects the orbital dynamics of the planetary systems and to define a suitable relativistic correction for Solar System orbital studies when only point masses are considered. Using relativistic formulae for the N body problem suited for a planetary system given in the literature we present a series of numerical orbital integrations designed to test the relevance of the effects due to the general theory of relativity in the case of our Solar System. Comparison between different algorithms for accounting for the relativistic corrections are performed. Relativistic effects generated by the Sun or by the central star are the most relevant ones and produce evident modifications in the secular dynamics of the inner Solar System. The Kozai mechanism, for example, is modified due to the relativistic effects on the argument of the perihelion. Relativistic effects generated by planets instead are of very low relevance but detectable in numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams F.C., Laughlin G. (2006) Effects of secular interactions in extrasolar planetary systems. Astrophys. J. 649: 992–1003

    Article  ADS  Google Scholar 

  • Anderson J.D., Esposito P.B., Martin W., Muhlemsn D.O. (1975) Experimental test of general relativity using time-delay data from Mariner 6 and Mariner 7. Astrophys. J. 200: 221–233

    Article  ADS  Google Scholar 

  • Barnes R., Quinn T. (2001) A statistical examination of the short-term stability of the upsilo andromedae planetary system. Astron. J. 550: 884–889

    ADS  Google Scholar 

  • Brumberg, V.: Essential Relativistic Celestial Mechanics. Adam Hilger, London. ISBN 0-7503-0062-0 (1991)

  • Brumberg V. (2007) On derivation of EIH (Einstein-Infeld-Hoffman) equations of motion from the linearized metric of general relativity theory. Celest. Mech. 99: 245–252

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Brumberg V., Kopeikin S. (1989a) Relativistic reference systems and motion of test bodies in the vicinity of the Earth. Nuovo Cimento B 103(1): 63–98

    Article  MathSciNet  ADS  Google Scholar 

  • Brumberg, V., Kopeikin, S.: Relativistic theory of celestial reference frames. Reference frames in astronomy and geophysics, pp. 115–141 (1989b)

  • Chambers J.E. (1999) A hybrid symplectic integrator that permits close encounters between massive bodies. MNRAS 304: 793–799

    Article  ADS  Google Scholar 

  • Ciufolini I. (2007) Dragging of inertial frames. Nature 449(7158): 41–47

    Article  ADS  Google Scholar 

  • Damour T., Soffel M., Xu C. (1991) General-relativistic celestial mechanics. I. Method and definition of reference systems. Phys. Rev. D 43: 3273–3307

    Article  MathSciNet  ADS  Google Scholar 

  • Damour T., Soffel M., Xu C. (1992) General-relativistic celestial mechanics. II. Translational equations of motion. Phys. Rev. D 45: 1017–1044

    Article  MathSciNet  ADS  Google Scholar 

  • Damour T., Soffel M., Xu C. (1993) General-relativistic celestial mechanics. III. Rotational equations of motion. Phys. Rev. D 47: 3124–3135

    MathSciNet  Google Scholar 

  • Duncan M.J., Levison H.F. (1997) A scattered comet disk and the origin of Jupiter family comets. Science 276: 1670–1672

    Article  ADS  Google Scholar 

  • Einstein A., Infeld L., Hoffman B. (1938) The gravitational equations and the problem of motion. Ann. Math. 39: 65–100

    Article  Google Scholar 

  • Everhart, E.: An efficient integrator that uses Gauss-Radau spacings. In: Carusi, A., Valsecchi, G.B. (eds.) Proceedings of IAU Colloq. 83 Dynamics of Comets: Their Origin and Evolution. Astrophysics and Space Science Library, vol. 115, pp. 185–202 (1985)

  • Fernandez J.A., Gallardo T., Brunini A. (2002) Are there many inactive Jupiter-family comets among the near-Earth asteroid population?. Icarus 159: 358–368

    Article  ADS  Google Scholar 

  • Ferraz-Mello S., Michtchenko T.A., Roig F. (1998) The determinant role of Jupiter’s great inequality in the depletion of the hecuba gap. Astron. J. 116: 1491–1500

    Article  ADS  Google Scholar 

  • Gallardo T. (2006) Atlas of the mean motion resonances in the Solar System. Icarus 184: 29–38

    Article  ADS  Google Scholar 

  • Gomes R., Gallardo T., Fernandez J.A., Brunini A. (2005) On the origin of the high-perihelion scattered disk: the role of the Kozai mechanism and mean motion resonances. CM&DA 91: 109–129

    Article  MATH  Google Scholar 

  • Gozdziewski K., Konacki M., Wolszczan A. (2005) Long-term stability and dynamical environment of the PSR 1257+12 planetary system. ApJ. 619: 1084–1097

    Article  ADS  Google Scholar 

  • Griffiths, D.: Introduction to electrodynamics. Prentice Hall (1999)

  • Iorio L. (2005) On the possibility of measuring the solar oblateness and some relativistic effects from planetary ranging. A&A 433: 385–393

    Article  ADS  Google Scholar 

  • Klioner S.A., Soffel M.H. (2000) Relativistic celestial mechanics with PPN parameters. Phys. Rev. D 62: 024019

    Article  MathSciNet  ADS  Google Scholar 

  • Kopeikin S. (1988) Celestial coordinate reference systems in curved space-time. Celestial Mech. 44(1–2): 87–115

    Article  MathSciNet  ADS  Google Scholar 

  • Kopeikin S., Vlasov I. (2004) Parametrized post-Newtonian theory of reference frames, multipolar expansions and equations of motion in the N-body problem. Phys. Rep. 400(4–6): 209–318

    Article  MathSciNet  ADS  Google Scholar 

  • Laskar J. (1988) Secular evolution of the solar system over 10 million years. A&A 198: 341–362

    ADS  Google Scholar 

  • Laskar J. (1996) Large scale chaos and marginal stability in the Solar System. CM&DA 64: 115–162

    Article  MATH  MathSciNet  Google Scholar 

  • Lykawka P.S., Mukai T. (2006) Exploring the 7:4 mean motion resonance—II: scattering evolutionary paths and resonance sticking. P&SS 54: 87–100

    ADS  Google Scholar 

  • Mardling R.A., Lin D.N.C. (2004) On the survival of short-period terrestrial planets. Astrophys. J. 614: 955–959

    Article  ADS  Google Scholar 

  • Marzari F., Scholl H. (2002) On the instability of Jupiter’s trojans. Icarus 159: 328–338

    Article  ADS  Google Scholar 

  • Michel P., Froeschlé Ch. (1997) The location of linear secular resonances for semimajor axes smaller than 2 AU. Icarus 128: 230–240

    Article  ADS  Google Scholar 

  • Michel P., Thomas F. (1996) The Kozai resonance for near-Earth asteroids with semimajor axes smaller than 2 AU. A&A 307: 310

    ADS  Google Scholar 

  • Michtchenko T.A., Ferraz-Mello S. (2001) Resonant structure of the outer Solar System in the neighborhood of the planets. Astron. J. 122: 474–481

    Article  ADS  Google Scholar 

  • Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W.H. Freeman (1973)

  • Morbidelli, A.: Modern Celestial Mechanics. Taylor & Francis (2002)

  • Nagasawa M., Lin D.N.C. (2005) The dynamical evolution of the short-period Extrasolar planet around upsilo andromedae in the pre-main-sequence stage. Astrophys. J. 632: 1140–1156

    Article  ADS  Google Scholar 

  • Newhall X.X., Standish E.M., Williams J.G. (1983) DE 102-A numerically integrated ephemeris of the moon and planets spanning forty-four centuries. A&A 125: 150–167

    MATH  ADS  Google Scholar 

  • Pireaux S., Rozelot J.-P. (2003) Solar quadrupole moment and purely relativistic gravitation contributions to Mercury’s perihelion advance. Ap&SS 284: 1159–1194

    Article  ADS  Google Scholar 

  • Pitjeva E.V. (2005) High-precision ephemerides of planets-EPM and determination of some astronomical constants. Solar Syst. Res. 39(3): 176

    Article  ADS  Google Scholar 

  • Quinn T., Tremaine S., Duncan M. (1991) A three million year integration of the earth’s orbit. Astron. J. 101: 2287–2305

    Article  ADS  Google Scholar 

  • Saha P., Tremaine S. (1992) Sympletic integrators for solar system dynamics. Astron. J. 104: 1633–1640

    Article  ADS  Google Scholar 

  • Shahid-Saless B., Yeomans D. (1994) Relativistic effects on the motion of asteroids and comets. Astron. J. 107: 1885–1889

    Article  ADS  Google Scholar 

  • Shapiro I.I., Ash M.E., Smith W.B. (1968) Icarus: further confirmation of the relativistic perihelion precession. Phys. Rev. Lett. 20: 1517–1518

    Article  ADS  Google Scholar 

  • Sitarski G. (1983) Effects of general relativity in the motion of minor planets and comets. Acta Astronomia 33: 295–304

    ADS  Google Scholar 

  • Soffel M., Klioner S.A., Petit G., Wolf P., Kopeikin S.M., Bretagnon P., Brumberg V.A., Capitaine N., Damour T., Fukushima T., Guinot B., Huang T.-Y., Lindegren L., Ma C., Nordtvedt K., Ries J.C., Seidelmann P.K., Vokrouhlický D., Will C.M., Xu C. (2003) The IAU 2000 resolutions for astrometry, celestial mechanics, and metrology in the relativistic framework: explanatory supplement. Astron. J. 126(6): 2687–2706

    Article  ADS  Google Scholar 

  • Varadi F., Runnegar B., Ghil M. (2003) Successive refinements in long-term integrations of planetary orbits. Astrophys. J. 592: 620–630

    Article  ADS  Google Scholar 

  • Weinberg, S.: Gravitation and cosmology. Wiley (1972)

  • Will, C.M.: Theory and experiment in gravitational physics. Cambridge University Press (1981)

  • Will, C.M.: Theory and experiment in gravitational physics revised edition. Cambridge University Press (1993)

  • Will, C.M.: The confrontation between general relativity and experiment. Living Rev. Relativity 9, 3. URL: http://www.livingreviews.org/lrr-2006-3 (2006)

  • Yeomans, D.K., Chodas, P.W., Sitarski et al.: Cometary orbit determination and nongravitational forces. In: Festou, M.C., Keller, H.U., Weaver, H.A. (eds.) Comets II. The University of Arizona Press (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Benitez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benitez, F., Gallardo, T. The relativistic factor in the orbital dynamics of point masses. Celest Mech Dyn Astr 101, 289–307 (2008). https://doi.org/10.1007/s10569-008-9146-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-008-9146-5

Keywords

Navigation