Skip to main content
Log in

Stability of the classical type of relative equilibria of a rigid body in the J 2 problem

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The motion of a point mass in the J 2 problem is generalized to that of a rigid body in a J 2 gravity field. The linear and nonlinear stability of the classical type of relative equilibria of the rigid body, which have been obtained in our previous paper, are studied in the framework of geometric mechanics with the second-order gravitational potential. Non-canonical Hamiltonian structure of the problem, i.e., Poisson tensor, Casimir functions and equations of motion, are obtained through a Poisson reduction process by means of the symmetry of the problem. The linear system matrix at the relative equilibria is given through the multiplication of the Poisson tensor and Hessian matrix of the variational Lagrangian. Based on the characteristic equation of the linear system matrix, the conditions of linear stability of the relative equilibria are obtained. The conditions of nonlinear stability of the relative equilibria are derived with the energy-Casimir method through the projected Hessian matrix of the variational Lagrangian. With the stability conditions obtained, both the linear and nonlinear stability of the relative equilibria are investigated in details in a wide range of the parameters of the gravity field and the rigid body. We find that both the zonal harmonic J 2 and the characteristic dimension of the rigid body have significant effects on the linear and nonlinear stability. Similar to the classical attitude stability in a central gravity field, the linear stability region is also consisted of two regions that are analogues of the Lagrange region and the DeBra-Delp region respectively. The nonlinear stability region is the subset of the linear stability region in the first quadrant that is the analogue of the Lagrange region. Our results are very useful for the studies on the motion of natural satellites in our solar system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  • Aboelnaga, M.Z., Barkin, Y.V.: Stationary motion of a rigid body in the attraction field of a sphere. Astronom. Zh. 56(3), 881–886 (1979)

    ADS  Google Scholar 

  • Balsas, M.C., Jiménez, E.S., Vera, J.A.: The motion of a gyrostat in a central gravitational field: phase portraits of an integrable case. J. Nonlinear Math. Phys. 15(s3), 53–64 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  • Barkin, Y.V.: Poincaré periodic solutions of the third kind in the problem of the translational-rotational motion of a rigid body in the gravitational field of a sphere. Astronom. Zh. 56, 632–640 (1979)

    MathSciNet  ADS  MATH  Google Scholar 

  • Beck, J.A., Hall, C.D.: Relative equilibria of a rigid satellite in a circular Keplerian orbit. J. Astronaut. Sci. 40(3), 215–247 (1998)

    MathSciNet  Google Scholar 

  • Beletskii, V.V., Ponomareva, O.N.: A parametric analysis of relative equilibrium stability in a gravitational field. Kosm. Issled. 28(5), 664–675 (1990)

    ADS  Google Scholar 

  • Bellerose, J., Scheeres, D.J.: Energy and stability in the full two body problem. Celest. Mech. Dyn. Astron. 100, 63–91 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Boué, G., Laskar, J.: Spin axis evolution of two interacting bodies. Icarus 201, 750–767 (2009)

    Article  ADS  Google Scholar 

  • Breiter, S., Melendo, B., Bartczak, P., Wytrzyszczak, I.: Synchronous motion in the Kinoshita problem. Applications to satellites and binary asteroids. Astron. Astrophys. 437(2), 753–764 (2005)

    Article  ADS  Google Scholar 

  • Broucke, R.A.: Numerical integration of periodic orbits in the main problem of artificial satellite theory. Celest. Mech. Dyn. Astron. 58, 99–123 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  • Hall, C.D.: Attitude dynamics of orbiting gyrostats. In: Prętka-Ziomek, H., Wnuk, E., Seidelmann, P.K., Richardson, D. (eds.) Dynamics of Natural and Artificial Celestial Bodies, pp. 177–186. Kluwer Academic, Dordrecht (2001)

    Google Scholar 

  • Hughes, P.C.: Spacecraft Attitude Dynamics, pp. 281–298. Wiley, New York (1986)

    Google Scholar 

  • Kinoshita, H.: Stationary motions of an axisymmetric body around a spherical body and their stability. Publ. Astron. Soc. Jpn. 22, 383–403 (1970)

    ADS  Google Scholar 

  • Koon, W.-S., Marsden, J.E., Ross, S.D., Lo, M., Scheeres, D.J.: Geometric mechanics and the dynamics of asteroid pairs. Ann. N.Y. Acad. Sci. 1017, 11–38 (2004)

    Article  ADS  Google Scholar 

  • Maciejewski, A.J.: Reduction, relative equilibria and potential in the two rigid bodies problem. Celest. Mech. Dyn. Astron. 63, 1–28 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. TAM Series, vol. 17. Springer, New York (1999)

    Book  MATH  Google Scholar 

  • McMahon, J.W., Scheeres, D.J.: Dynamic limits on planar libration-orbit coupling around an oblate primary. Celest. Mech. Dyn. Astron. 115, 365–396 (2013)

    Article  ADS  MATH  Google Scholar 

  • Scheeres, D.J.: Stability in the full two-body problem. Celest. Mech. Dyn. Astron. 83, 155–169 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Scheeres, D.J.: Stability of relative equilibria in the full two-body problem. Ann. N.Y. Acad. Sci. 1017, 81–94 (2004)

    Article  ADS  Google Scholar 

  • Scheeres, D.J.: Spacecraft at small NEO (2006). arXiv:physics/0608158v1

  • Scheeres, D.J.: Stability of the planar full 2-body problem. Celest. Mech. Dyn. Astron. 104, 103–128 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Teixidó Román, M.: Hamiltonian methods in stability and bifurcations problems for artificial satellite dynamics. Master thesis, Facultat de Matemàtiques i Estadística, Universitat Politècnica de Catalunya, pp. 51–72 (2010)

  • Vereshchagin, M., Maciejewski, A.J., Goździewski, K.: Relative equilibria in the unrestricted problem of a sphere and symmetric rigid body. Mon. Not. R. Astron. Soc. 403, 848–858 (2010)

    Article  ADS  Google Scholar 

  • Wang, Y., Xu, S.: Gravitational orbit-rotation coupling of a rigid satellite around a spheroid planet. J. Aerosp. Eng. (in press). doi:10.1061/(ASCE)AS.1943-5525.0000222

  • Wang, Y., Xu, S.: Hamiltonian structures of dynamics of a gyrostat in a gravitational field. Nonlinear Dyn. 70(1), 231–247 (2012)

    Article  Google Scholar 

  • Wang, Y., Xu, S.: Symmetry, reduction and relative equilibria of a rigid body in the J 2 problem. Adv. Space Res. 51(7), 1096–1109 (2013a)

    Article  ADS  Google Scholar 

  • Wang, Y., Xu, S.: Gravity gradient torque of spacecraft orbiting asteroids. Aircr. Eng. Aerospace Technol. 85(1), 72–81 (2013b)

    Article  Google Scholar 

  • Wang, L.-S., Krishnaprasad, P.S., Maddocks, J.H.: Hamiltonian dynamics of a rigid body in a central gravitational field. Celest. Mech. Dyn. Astron. 50, 349–386 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Wang, L.-S., Maddocks, J.H., Krishnaprasad, P.S.: Steady rigid-body motions in a central gravitational field. J. Astronaut. Sci. 40(4), 449–478 (1992)

    MathSciNet  ADS  Google Scholar 

  • Wang, L.-S., Lian, K.-Y., Chen, P.-T.: Steady motions of gyrostat satellites and their stability. IEEE Trans. Autom. Control 40(10), 1732–1743 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Wisdom, J.: Rotational dynamics of irregularly shaped natural satellites. Astron. J. 94, 1350–1360 (1987)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Innovation Foundation of BUAA for PhD Graduates, the Graduate Innovation Practice Foundation of BUAA under Grant YCSJ-01-201306 and the National Natural Science Foundation of China under Grant 11172020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Wang.

Appendix: Formulations of coefficients in characteristic equations

Appendix: Formulations of coefficients in characteristic equations

The explicit formulations of the coefficients in the characteristic equations Eqs. (38) and (50) are given as follows:

(52)
(53)
(54)
(55)
(56)
$$ C_{2} = - \frac{1}{mI_{yy}}\bigl( I_{yy} + m^{2} \varOmega _{e}^{2}R_{e}^{2}I_{yy} + m\varOmega _{e}^{2}I_{zz} I_{yy} + m \bigr), $$
(57)
$$ C_{1} = \frac{1}{mI_{yy}}\bigl( \varOmega _{e}^{2}I_{zz} I_{yy} + m^{2}\varOmega _{e}^{2}R_{e}^{2} + 1 + m\varOmega _{e}^{2}I_{zz} - m\varOmega _{e}^{2}I_{yy} \bigr), $$
(58)
$$ C_{0} = \frac{\varOmega _{e}^{2}}{mI_{yy}}( I_{yy} - I_{zz} ), $$
(59)
(60)
(61)
(62)
(63)
(64)
(65)
(66)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Xu, S. Stability of the classical type of relative equilibria of a rigid body in the J 2 problem. Astrophys Space Sci 346, 443–461 (2013). https://doi.org/10.1007/s10509-013-1473-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-013-1473-7

Keywords

Navigation