Skip to main content
Log in

Assessment of dynamical models for transitioning from the Circular Restricted Three-Body Problem to an ephemeris model with applications

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

While the Circular Restricted Three-Body Problem (CR3BP) provides useful structures for various applications, transitioning the solutions from the CR3BP to a higher-fidelity ephemeris model while maintaining specific characteristics remains non-trivial. An analytical approach is leveraged to provide additional insight on the perturbations that are present in an ephemeris model. For the Earth–Moon CR3BP, pulsation of the Earth–Moon distance and solar gravity are identified as key components contributing to the additional accelerations, where patterns are illustrated through simplified mathematical relationships and graphics. Utilizing these findings, capabilities and limitations of two intermediate models, the Elliptic Restricted Three-Body Problem and the Bi-Circular Restricted Four-Body Problem, are assessed within the context of transitioning from the CR3BP to a realistic ephemeris model. A sample transition process for Earth–Moon L2 halo orbits is provided, leveraging the insight from the proposed analytical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Acton, C., Bachman, N., Semenov, B., et al.: A look toward the future in the handling of space science mission geometry. Planet. Space Sci. 150, 9–12 (2018). https://doi.org/10.1016/j.pss.2017.02.013

    Article  ADS  Google Scholar 

  • Angelopoulos, V.: The ARTEMIS mission. Space Sci. Rev. 165(1), 3–25 (2011). https://doi.org/10.1007/s11214-010-9687-2

    Article  ADS  Google Scholar 

  • Boudad, K.K., Howell, K.C., Davis, D.C.: Analogs for earth-moon halo orbits and their evolving characteristics in higher-fidelity force models. In: AIAA SCITECH 2022 Forum, p. 1276 (2022)

  • Boudad, K.K.: Trajectory design between cislunar space and sun–earth libration points in a four-body model. Ph.D. Dissertation, Purdue University, West Lafayette, Indiana (2022)

  • Boudad, K.K., Howell, K.C., Davis, D.C.: Dynamics of synodic resonant near rectilinear halo orbits in the bicircular four-body problem. Adv. Space Res. 66(9), 2194–2214 (2020). https://doi.org/10.1016/j.asr.2020.07.044

    Article  ADS  Google Scholar 

  • Crusan, J.C., Smith, R.M., Craig, D.A., et al.: Deep space gateway concept: extending human presence into cislunar space. In: 2018 IEEE Aerospace Conference, pp. 1–10. IEEE (2018)

  • Davis, D.C., Phillips, S.M., Howell, K.C., et al.: Stationkeeping and transfer trajectory design for spacecraft in cislunar space. In: AAS/AIAA Astrodynamics Specialist Conference, pp. 1–20 (2017)

  • Dei Tos, D.A., Topputo, F.: On the advantages of exploiting the hierarchical structure of astrodynamical models. Acta Astronautica 136, 236–247 (2017). https://doi.org/10.1016/j.actaastro.2017.02.025

  • Dei Tos, D.A., Topputo, F.: Trajectory refinement of three-body orbits in the real solar system model. Adv. Space Res. 59(8), 2117–2132 (2017). https://doi.org/10.1016/j.asr.2017.01.039

  • Dei Tos, D.A.: Automated trajectory refinement of three-body orbits in the real solar system model. Master’s Thesis, Politecnico di Milano, Italy (2014)

  • Ferrari, F., Lavagna, M.: Periodic motion around libration points in the elliptic restricted three-body problem. Nonlinear Dyn. 93(2), 453–462 (2018). https://doi.org/10.1007/s11071-018-4203-4

    Article  Google Scholar 

  • Gómez, G., Jorba, A., Simó, C., et al.: Dynamics and Mission Design Near Libration Points: Volume III: Advanced Methods for Collinear Points. World Scientific (2001)

  • Gómez, G., Masdemont, J.J., Mondelo, J.M.: Solar system models with a selected set of frequencies. Astron. Astrophys. 390(2), 733–749 (2002). https://doi.org/10.1051/0004-6361:20020625

    Article  ADS  Google Scholar 

  • Hoffman, A., Park, B., Roorda, T., et al.: Trajectory design for a secondary payload within a complex gravitational environment: the khon-1 spacecraft. In: 2022 AAS/AIAA Astrodynamics Specialist Conference (2022)

  • Hou, X., Liu, L.: On quasi-periodic motions around the triangular libration points of the real earth-moon system. Celest. Mech. Dyn. Astron. 108(3), 301–313 (2010). https://doi.org/10.1007/s10569-010-9305-3

    Article  ADS  MathSciNet  Google Scholar 

  • Jorba, A., Villanueva, J.: On the persistence of lower dimensional invariant tori under quasi-periodic perturbations. J. Nonlinear Sci. 7(5), 427–473 (1997). https://doi.org/10.1007/s003329900036

    Article  ADS  MathSciNet  Google Scholar 

  • Jorba-Cuscó, M., Farrés, A., Jorba, À.: Two periodic models for the earth-moon system. Front. Appl. Math. Stat. 4(32), 1–14 (2018). https://doi.org/10.3389/fams.2018.00032

    Article  Google Scholar 

  • Lian, Y., Gómez, G., Masdemont, J.J., et al.: A note on the dynamics around the Lagrange collinear points of the earth-moon system in a complete solar system model. Celest. Mech. Dyn. Astron. 115, 185–211 (2013). https://doi.org/10.1007/s10569-012-9459-2

    Article  ADS  MathSciNet  Google Scholar 

  • McCarthy, B.P.: Cislunar trajectory design methodologies incorporating quasi-periodic structures with applications. Ph.D. Dissertation, Purdue University, West Lafayette, Indiana (2022)

  • Ocampo, C.: An architecture for a generalized spacecraft trajectory design and optimization system. In: Libration Point Orbits and Applications, pp. 529–571 (2003). https://doi.org/10.1142/9789812704849_0023

  • Oguri, K., Oshima, K., Campagnola, S., et al.: Equuleus trajectory design. J. Astronaut. Sci. 67(3), 950–976 (2020). https://doi.org/10.1007/s40295-019-00206-y

    Article  ADS  Google Scholar 

  • Olikara, Z.P.: Computation of quasi-periodic tori and heteroclinic connections in astrodynamics using collocation techniques. Ph.D. Dissertation, University of Colorado at Boulder, Boulder, Colorado (2016)

  • Park, B.: Low-thrust trajectory design for tours of the Martian moons. Master’s Thesis, Purdue University, West Lafayette, Indiana (2021)

  • Park, R.S., Folkner, W.M., Williams, J.G., et al.: The JPL planetary and lunar ephemerides DE440 and DE441. Astron. J. 161(3), 105 (2021). https://doi.org/10.3847/1538-3881/abd414

    Article  ADS  Google Scholar 

  • Peng, H., Bai, X.: Natural deep space satellite constellation in the Earth–Moon elliptic system. Acta Astronaut. 153, 240–258 (2018). https://doi.org/10.1016/j.actaastro.2018.01.008

    Article  ADS  Google Scholar 

  • Sanaga, R.R., Howell, K.: Synodic resonant halo orbits in the hill restricted four-body problem. In: 33rd AAS/AIAA Spaceflight Mechanics Meeting (2023)

  • Scheuerle, S.: Construction of ballistic lunar transfers in the earth-moon-sun system. Master’s Thesis, Purdue University, West Lafayette, Indiana (2021)

  • Szebehely, V.: Theory of Orbit: The Restricted Problem of Three Bodies. Academic Press (1967)

  • The MathWorks Inc.: MATLAB version: 9.7.0 (R2019b) (2019). https://www.mathworks.com

  • Williams, J., Lee, D., Whitley, R., et al.: Targeting cislunar near rectilinear halo orbits for human space exploration. In: 27th AAS/AIAA Space Flight Mechanics Meeting (2017)

Download references

Acknowledgements

The authors would like to thank Kenza Boudad and rest of the Multi-Body Dynamics Group members for insightful discussions. The first author would like to thank Kwanjeong Educational Foundation for the financial support. Support from NASA Johnson Space Center under cooperative Agreement Number 80NSSC18M0122 is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beom Park.

Ethics declarations

conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Derivations of Equation (22)

The acceleration terms in Eq. (21) are rearranged to yield cancellations and a more useful form. First, note that the familiar relative acceleration of the Moon with respect to Earth is evaluated as follows,

$$\begin{aligned} \vec {A}_{EM}= & {} -\frac{{\tilde{\mu }}_E + {\tilde{\mu }}_M}{R_{EM}^3}\vec {R}_{EM}+ \sum _{j \in \mathcal {A}}{\tilde{\mu }}_j\left( \frac{1}{R_{jE}^3}\vec {R}_{jE} - \frac{1}{R_{jM}^3}\vec {R}_{jM}\right) \nonumber \\= & {} \frac{{\tilde{\mu }}_E + {\tilde{\mu }}_M}{l^2} \left( -\hat{x} + \sum _{j \in \mathcal {A}} \mu _j\left( \frac{1}{\rho _{jE}^3}\vec {\rho }_{jE} - \frac{1}{\rho _{jM}^3}\vec {\rho }_{jM}\right) \right) . \end{aligned}$$
(1)

Then, for the ephemeris model, \(\ddot{\vec {\rho }}_{\mathcal {A}}\) is denoted as \(\ddot{\vec {\rho }}_{\mathcal {A}, H}\), where each coefficient in Eq. (21) is evaluated with instantaneous ephemerides data. The \(\hat{x}\)-component of \(\ddot{\vec {\rho }}_{\mathcal {A}, H}\) is evaluated as, \(\ddot{\vec {\rho }}_{\mathcal {A}, H} \cdot \hat{x} = b_1 + (b_7-1)x+b_9y +b_8z - \sum _{j\in \mathcal {A}}\frac{\mu _j}{\rho _{jc}^3}(x - x_j)\). Here, note that \(b_1\) is evaluated as,

$$\begin{aligned} b_1 =\sum _{j \in \mathcal {A}}\mu _j \left( \frac{1-\mu }{\rho _{jE}^3}(-\mu -x_j) + \frac{\mu }{\rho _{jM}^3}(1-\mu -x_j)\right) . \end{aligned}$$
(2)

Next, \(b_7\) results in the following,

$$\begin{aligned} b_7-1= & {} -\frac{{l}''}{({t}')^2l}+ \frac{h^2}{({t}')^2l^4}-1 =-\frac{l(\vec {R}_{EM}\cdot \vec {A}_{EM}+V_{EM}^2)-{l}'(\vec {R}_{EM}\cdot \vec {V}_{EM})}{({t}')^2l^3}\nonumber \\{} & {} + \frac{l^2(V_{EM}^2-{l}'^2)}{({t}')^2l^4}-1 \nonumber \\= & {} -\frac{\vec {A}_{EM}\cdot \hat{x}}{({t}')^2l}-1 = \sum _{j \in \mathcal {A}} \mu _j\left( \frac{1}{\rho _{jE}^3}(\mu +x_j) + \frac{1}{\rho _{jM}^3}(1-\mu -x_j)\right) , \end{aligned}$$
(3)

where leveraging \(\vec {R}_{EM} = l\hat{x}\), and \(h =l \sqrt{V_{EM}^2-{l}'^2}\). Similarly, \(b_8\) is evaluated as,

$$\begin{aligned} b_8 = - \frac{1}{{t}'^2l}\vec {A}_{EM}\cdot \hat{z} = \sum _{j \in \mathcal {A}} \mu _j\left( \frac{1}{\rho _{jE}^3}z_j - \frac{1}{\rho _{jM}^3}z_j\right) . \end{aligned}$$
(4)

Finally, \(b_9\) results in,

$$\begin{aligned} b_9&= \frac{{h}'}{({t}')^2l^2} = \frac{\hat{z} \cdot (\vec {R}_{EM} \times \vec {A}_{EM})}{({t}')^2l^2} = \frac{1}{{t}'^2l} \vec {A}_{EM}\cdot \hat{y} = \sum _{j \in \mathcal {A}}\mu _j \left( -\frac{1}{\rho _{jE}^3}y_j + \frac{1}{\rho _{jM}^3}y_j \right) . \end{aligned}$$
(5)

Repeating a similar process for \(\ddot{\vec {\rho }}_{\mathcal {A}, H} \cdot \hat{y}\) and \(\ddot{\vec {\rho }}_{\mathcal {A}, H} \cdot \hat{z}\) results in the following expression,

$$\begin{aligned} \ddot{\vec {\rho }}_{\mathcal {A}, H}= & {} - \sum _{j\in \mathcal {A}}\mu _j\left( \frac{\vec {\rho }_{jc}}{\rho _{jc}^3}+\frac{\vec {\rho }_{Mc}\cdot \hat{x}}{\rho _{jE}^3}\vec {\rho }_{jE} - \frac{\vec {\rho }_{Ec}\cdot \hat{x}}{\rho _{jM}^3}\vec {\rho }_{jM} -\frac{\vec {\rho }_{Mc}\cdot \hat{y}}{\rho _{jE}^3}(\vec {\rho }_{jE}\times \hat{z}) \right. \nonumber \\{} & {} \left. + \frac{\vec {\rho }_{Ec}\cdot \hat{y}}{\rho _{jM}^3}(\vec {\rho }_{jM}\times \hat{z}) -(\frac{zz_j}{\rho _{jE}^3} - \frac{zz_j}{\rho _{jM}^3})\hat{x} \right) \cdots \nonumber \\{} & {} + \begin{bmatrix} 0 &{} 0 &{} 0 \\ 0&{} 0 &{} b_6 \\ 0 &{} -b_6 &{} 0 \end{bmatrix} \dot{\vec {\rho }} + \begin{bmatrix} 0 &{} 0 &{} 0 \\ 0 &{} b_{12}-b_{12a} &{} b_{11} \\ 0 &{} -b_{11} &{} b_{12}-b_{12a} \end{bmatrix} \vec {\rho }. \end{aligned}$$
(6)

The above equation is the same as Eq. (22), concluding the derivations.

Appendix B: Derivations of Equation (24)

Further simplification of Eq. (22) for \(\ddot{\vec {\rho }}_{\mathcal {A}, H}\) is deduced from the additional assumptions. Assuming that \(\rho _j>>1\), the inverse cubes of distance from j to the s/c, Earth, Moon, are linearized as,

$$\begin{aligned}&\frac{1}{\rho _{jc}^3} \approx \frac{1}{\rho _{j}^3} + \frac{3}{\rho _{j}^5}(x_jx +y_jy +z_jz) \end{aligned}$$
(7)
$$\begin{aligned}&\frac{1}{\rho _{jE}^3} \approx \frac{1}{\rho _{j}^3} + \frac{3}{\rho _{j}^5}x_j(-\mu ) \end{aligned}$$
(8)
$$\begin{aligned}&\frac{1}{\rho _{jM}^3} \approx \frac{1}{\rho _{j}^3} + \frac{3}{\rho _{j}^5}x_j(1-\mu ), \end{aligned}$$
(9)

respectively. Utilizing these linearized functions, the expressions for the terms in Eq. (22) are reduced to simpler formulations. For the \(\hat{x}\)-direction, the resulting expression is,

$$\begin{aligned} \ddot{\vec {\rho }}_{\mathcal {A}, H} \cdot \hat{x}&\approx \sum _{j \in \mathcal {A}}(\frac{3\mu _j }{\rho _{j}^5} \cdot 2 x_jy_jy) . \end{aligned}$$
(10)

Next, the approximate accelerations for the \(\hat{y}\) and \(\hat{z}\)-directions are evaluated as,

$$\begin{aligned} \ddot{\vec {\rho }}_{\mathcal {A}, H} \cdot \hat{y}&\approx \sum _{j \in \mathcal {A}}\frac{3\mu _j }{\rho _{j}^5} \left( (y_j^2 - x_j^2)y + y_jz_jz\right) + (b_{12}-b_{12a})y + b_{11}z + b_{6}\dot{z} \end{aligned}$$
(11)
$$\begin{aligned} \ddot{\vec {\rho }}_{\mathcal {A}, H} \cdot \hat{z}&\approx \sum _{j \in \mathcal {A}}\frac{3\mu _j }{\rho _{j}^5} \left( y_jz_jy + z_jz_jz \right) - b_{11} y + (b_{12}-b_{12a}) z - b_6\dot{y}, \end{aligned}$$
(12)

where coefficients \(b_6, b_{11}\), and \(b_{12} - b_{12a}\) are also well approximated. From Table 2, the expressions for these coefficients consist solely of \(\vec {A}_{EM}\cdot \hat{z}\) and \(\vec {J}_{EM} \cdot \hat{z}\). The first term, \(\vec {A}_{EM}\cdot \hat{z}\), is linearized as,

$$\begin{aligned} \vec {A}_{EM} \cdot \hat{z}&\approx {t}'^2 l \sum _{j \in \mathcal {A}} \frac{3\mu _j}{\rho _j^5} x_j z_j. \end{aligned}$$
(13)

Leveraging this expression, the second term, \(\vec {J}_{EM}\cdot \hat{z}\), is linearized as,

$$\begin{aligned} \vec {J}_{EM} \cdot \hat{z}= & {} (\vec {A}_{EM} \cdot \hat{z})' - \vec {A}_{EM} \cdot \hat{z}' = (\vec {A}_{EM} \cdot \hat{z})' - \frac{h'}{h}(\vec {A}_{EM} \cdot \hat{z}) \nonumber \\{} & {} \approx K_1 \sum _{j \in \mathcal {A}} \frac{3\mu _j}{\rho _j^5} x_j z_j+ {t}'^2 l \sum _{j \in \mathcal {A}} \left( \frac{3\mu _j}{\rho _j^5} (x_j \dot{z}_j + \dot{x}_j z_j )\right. \nonumber \\{} & {} \left. -\frac{15\mu _j}{\rho _j^7}x_jz_j(\dot{x}_jx_j + \dot{y}_jy_j + \dot{z}_jz_j) \right) , \end{aligned}$$
(14)

where \( K_1 = 2{t}'{t}''l + {t}'^2 {l}' - \frac{{h}'{t}'^2\,l }{h}\). These quantities are utilized to compute \(b_6, b_{11}\), and \(b_{12} - b_{12a}\), where it is noted that the linearized expressions contain \(z_j\) and \(\dot{z}_j\) within the summation, or, the out-of-plane position and velocity components of the additional bodies with respect to the pulsating–rotating frame. Additionally, if additional bodies are negligible except for the Sun, and assuming that \(|z_S |\ll \rho _S\), or the \(\hat{z}\)-component of the solar position is negligible, the following linearized expression is produced,

$$\begin{aligned} \ddot{\vec {\rho }}_{\mathcal {A}, H} \approx \ddot{\vec {\rho }}_{\mathcal {A}, L} := \frac{3\mu _S }{\rho _{S}^5} \left( 2x_Sy_Sy\hat{x} +(y_S^2 - x_S^2)y \hat{y} \right) = \frac{3\mu _S }{\rho _{S}^3}y (\sin 2 \theta _S \hat{x} - \cos 2\theta _S \hat{y}), \end{aligned}$$
(15)

concluding the derivations of Eq. (24).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, B., Howell, K.C. Assessment of dynamical models for transitioning from the Circular Restricted Three-Body Problem to an ephemeris model with applications. Celest Mech Dyn Astron 136, 6 (2024). https://doi.org/10.1007/s10569-023-10178-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-023-10178-9

Keywords

Navigation