Skip to main content
Log in

Numerical integration of periodic orbits in the main problem of artificial satellite theory

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We describe a collection of results obtained by numerical integration of orbits in the main problem of artificial satellite theory (theJ 2 problem). The periodic orbits have been classified according to their stability and the Poincaré surfaces of section computed for different values ofJ 2 andH (whereH is thez-component of angular momentum). The problem was scaled down to a fixed value (−1/2) of the energy constant. It is found that the pseudo-circular periodic solution plays a fundamental role. They are the equivalent of the Poincaré first-kind solutions in the three-body problem. The integration of the variational equations shows that these pseudo-circular solutions are stable, except in a very narrow band near the critical inclincation. This results in a sequence of bifurcations near the critical inclination, refining therefore some known results on the critical inclination, for instance by Izsak (1963), Jupp (1975, 1980) and Cushman (1983). We also verify that the double pitchfork bifurcation around the critical inclination exists for large values ofJ 2, as large as |J 2|=0.2. Other secondary (higher-order) bifurcations are also described. The equations of motion were integrated in rotating meridian coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aksnes, K.: 1965, ‘On the dynamic theory of a near-earth satellite, Part I’,Astrophysica Norvegica 10, 149–169.

    Google Scholar 

  • Aksnes, K.: 1970, ‘A second-order artificial satellite theory based on an intermediary orbit’,Astron. J. 75, 1066–1076.

    Google Scholar 

  • Broucke, R.: 1979, ‘Periodic satellite orbits in the general problem of three bodies, in:Natural and Artificial Satellite Motion, Eds. P. Nacozy and J. Ferraz-Mello, University of Texas Press, Austin, Texas.

    Google Scholar 

  • Brouwer, D.: 1959, ‘Solution of the problem of artificial satellite theory without drag’,Astron. J. 64, 378–397.

    Google Scholar 

  • Cartan, E.: 1922,Leçons sur les Invariants Integraux, Hermann, Paris.

    Google Scholar 

  • Coffey, S.L., Deprit, A. and Miller, B.R.: 1986, ‘The critical inclination in artificial satellite theory’,Celest. Mech. 39, 365–406.

    Google Scholar 

  • Contopoulos, G.: 1960, ‘A third integral of motion in a galaxy’,Z. Astrophys. 49, 273–291.

    Google Scholar 

  • Contopoulos, G.: 1970, ‘Orbits in highly perturbed dynamical systems, II: Stability of periodic orbits’,Astron. J. 75, 108–130.

    Google Scholar 

  • Cook, G.E.: 1966, ‘Perturbations of near-circular orbits by the Earth's gravitational potential’,Planet. Space Sci. 14, 433–444.

    Google Scholar 

  • Cushman, R.: 1983, ‘Reduction, Brouwer's Hamiltonian and the critical inclination’,Celest. Mech. 31, 401–429.

    Google Scholar 

  • Cushman, R.: 1988, ‘An analysis of the critical inclination problem using singularity theory’,Celest. Mech. 42, 39–51.

    Google Scholar 

  • Danby, J.M.A.: 1968, ‘Motion of a satellite of a very oblate planet’,Astron. J. 73, 1031–1038.

    Google Scholar 

  • Davoust, E.: 1983, ‘Periodic orbits in elliptical galaxies’,Astron. Astrophys. 125, 101–108.

    Google Scholar 

  • Davoust, E. and Broucke, E.: 1982, ‘A manifold of periodic orbits in the planar general three-body problem with equal masses’,Astron. Astrophys. 112, 305–320.

    Google Scholar 

  • Deprit, A. and Price, J.F.: 1965, ‘The computation of characteristic exponents in the planar restricted problem of three bodies’,Astron. J. 70, 836–846.

    Google Scholar 

  • Deprit, A. and Henrard, J.: 1967, ‘Natural families of periodic orbits’,Astron. J. 72, 158–172.

    Google Scholar 

  • Deprit, A.: 1969, ‘Canonical transformations depending on a small parameter’,Celest. Mech. 1, 12–30.

    Google Scholar 

  • Deprit, A. and Rom, A.: 1970, ‘The main problem of artificial satellite theory for small and moderate eccentricities’,Celest. Mech. 2, 166–206.

    Google Scholar 

  • Deprit, A.: 1981, ‘The elimination of the parallax in satellite theory’,Celest. Mech. 24, 111–153.

    Google Scholar 

  • Farless, D.L.: 1985, ‘The application of periodic orbits to TOPEX mission design’, AAS/AIAA Astrodynamics Specialist Conference, AAS, pp. 85–301.

  • Henon, M.: 1965, ‘Exploration numérique du problème restreint, II’,Ann. Astrophys. 28 (6), 992–1007.

    Google Scholar 

  • Izsak, I.: 1963, ‘On the critical inclination in satellite theory’, pp. 17–40, in:The Use of Artificial Satellites for Geodesy, Ed. G. Veis, North-Holland, Amsterdam.

    Google Scholar 

  • Jupp, A.H.: 1975, ‘The problem of the critical inclination revisited’,Celest. Mech. II, 361–378.

    Google Scholar 

  • Jupp, A.H.: 1980, ‘The critical inclination problem with small eccentricity, Part I: General theory’,Celest. Mech. 21, 361–393.

    Google Scholar 

  • Jupp, A.H.: 1988, ‘The critical inclination problem: 30 years of progress’,Celest. Mech. 43, 127–138.

    Google Scholar 

  • Kammeyer, P.C.: 1976, ‘Periodic and quasi-periodic earth satellite orbits’,Celest. Mech. 14, 159–165.

    Google Scholar 

  • Kammeyer, P.C.: 1979, ‘Survey of periodic satellite orbit existence theory’ in:Natural and Artificial Satellite Motion, Eds. P. Nacozy and J. Ferraz-Mello, University of Texas Press, Austin, Texas.

    Google Scholar 

  • Lear, W.: 1987, ‘Orbital elements including theJ-harmonic’, NASA-JSC Report 22213, Revision 1, September 1987, Houston, Texas.

  • MacMillan, W.D.: 1910, ‘Periodic orbits about an oblate spheroid’,Trans. Amer. Math. Soc. II, 55–120.

    Google Scholar 

  • Mayer, F. and Martinet, L.: 1973. Propriètés des Orbites galactiques pour des étoiles a grande vitesse’,Astron. Astrophys. 27, 199–208.

    Google Scholar 

  • Szebehely, V. and Zare, K.: 1977, ‘Stability of classical triplets and of their hierarchy’,Astron. Astrophys. 58, 145–152.

    Google Scholar 

  • Taff, L.: 1985,Celestial Mechanics, J. Wiley & Sons, N. Y., p. 172.

    Google Scholar 

  • Wintner, A.: 1947,The Analytical Foundations of Celestial Mechanics, Princeton University Press, Princeton, New Jersey, pp. 102–111.

    Google Scholar 

  • Zare, K.: 1983, ‘The possible motions of a satellite about an oblate planet’,Celest. Mech. 30, 49–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broucke, R.A. Numerical integration of periodic orbits in the main problem of artificial satellite theory. Celestial Mech Dyn Astr 58, 99–123 (1994). https://doi.org/10.1007/BF00695787

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00695787

Key words

Navigation