Skip to main content
Log in

Effect of macroalgae as a functional ingredient in grow-out diets on the biological performance, digestive capacity, and immune response of totoaba, Totoaba macdonaldi

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Recent research evaluating functional ingredients, such as prebiotics, has resulted in a reduction of enteritis caused by some plant ingredients in carnivorous fish. Macroalgae contains polysaccharides that have the characteristics of a prebiotic ingredient. Thus, the objective of this study was to evaluate the effects of macroalgae meal inclusion in formulated Totoaba macdonaldi diets containing soybean meal. Two isoproteic (48%) and isolipidic (13%) diets were formulated to meet totoaba nutritional requirements containing 26% soybean meal, the control diet (SBM-C) without prebiotic and one with the addition of 3% Mega Smart Kelp a macroalgae meal prebiotic (SBM+Pre). In addition, 2 commercial diets formulated with SMB at two levels (7 and 14% labeled ALG1 and ALG2, respectively) and supplemented with the macroalgae meal prebiotic (1.5%) were evaluated. A total of 120 totoabas (157.83 g) were distributed into 450-L tanks in triplicate groups. At the end of the bioassay, the fish fed the SBM-C and SBM+Pre diets had significantly higher growth, better dietary protein efficiency, and higher digestibility compared to fish fed ALG1 and ALG2. Furthermore, a lower expression level of immunoglobulin M (igm) and interleukin (il8) genes was observed in the fish fed the prebiotic experimental diets. These results revealed that the commercial diets resulted in lower productive performance of the juveniles and negatively affected the intestinal health of the totoabas, even more than the SBM-C and SBM+Pre diets that included soybean meal and is possibly related to saponin content of these diets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akande KE, Doma UD, Agu HO, Adamu HM (2010) Major antinutrients found in plant protein sources: their effect on nutrition. Pak J Nutr 9:827–832. https://doi.org/10.3923/pjn.2010.827.832

    Article  CAS  Google Scholar 

  • AOAC (2000) Official methods of analysis. Association of Analytical Chemists, Arlington, VA, USA

  • Baeverfjord G, Krogdahl A (1996) Development and regression of soybean meal induced enteritis in Atlantic salmon, Salmo salar L., distal intestine: a comparison with the intestines of fasted fish. J Fish Dis 19:375–387

    Article  Google Scholar 

  • Bakke-Mckellep AM, Penn MH, Salas PM, Refstie S, Sperstad S, Landsverk T, Ringø E, Krogdahl Å (2007) Effects of dietary soyabean meal, inulin and oxytetracycline on intestinal microbiota and epithelial cell stress, apoptosis and proliferation in the teleost Atlantic salmon (Salmo salar L.). Br J Nutr 97:699–713. https://doi.org/10.1017/S0007114507381397

    Article  CAS  PubMed  Google Scholar 

  • Berrazaga I, Micard V, Gueugneau M, Walrand S (2019) The role of the anabolic properties of plant-versus animal-based protein sources in supporting muscle mass maintenance: a critical review. Nutrients 11:1825. https://doi.org/10.3390/nu11081825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonaldo A, Roem AJ, Fagioli P, Pecchini A, Cipollini I, Gatta PP (2008) Influence of dietary levels of soybean meal on the performance and gut histology of gilthead sea bream (Sparus aurata L.) and European sea bass (Dicentrarchus labrax L.). Aquacult Res 39:970–978. https://doi.org/10.1111/j.1365-2109.2008.01958.x

    Article  CAS  Google Scholar 

  • Bowyer JN, Qin JG, Smullen RP, Adams LR, Thomson MJS, Stone DAJ (2013) The use of a soy product in juvenile yellowtail kingfish (Seriola lalandi) feeds at different water temperatures: 1. Solvent extracted soybean meal. Aquaculture 384-387:35–45. https://doi.org/10.1016/j.aquaculture.2012.12.005

    Article  CAS  Google Scholar 

  • Buentello JA, Neill WH, Gatlin DM (2010) Effects of dietary prebiotics on the growth, feed efficiency and non-specific immunity of juvenile red drum Sciaenops ocellatus fed soybean-based diets. Aquacult Res 41:411–418. https://doi.org/10.1111/j.1365-2109.2009.02178.x

    Article  CAS  Google Scholar 

  • Castro-González MI, Carrillo-Dominguez S, Perez-Gil F (1994) Composición química de Macrocistys pyrifera (sargazo gigante) recolectada en verano e invierno y su posible empleo en alimentación animal. Cienc Mar 20:33–40. https://doi.org/10.7773/cm.v20i1.955

    Article  Google Scholar 

  • Carbonaro M, Maselli P, Nucara A (2012) Relationship between digestibility and secondary structure of raw and thermally treated legume proteins; a Fourier transform infrared (FT-IR) spectroscopic study. Amino Acids 43:911–921. https://doi.org/10.1007/s00726-011-1151-4

    Article  CAS  PubMed  Google Scholar 

  • Cerezuela R, Fumanal M, Tapia-Paniagua ST, Meseguer J, Morinigo MÁ, Esteban MÁ (2012) Histological alterations and microbial ecology of the intestine in gilthead seabream (Sparus aurata L.) fed dietary probiotics and microalgae. Cell Tissue Res 350:477–489. https://doi.org/10.1007/s00441-012-1495-4

    Article  PubMed  Google Scholar 

  • Colombo SM, Zhang Z, Wong DF, Yuan ZH (2020) Hydrolysis lignin as a multifunctional additive in Atlantic salmon feed improves fish growth performance and pellet quality and shifts gut microbiome. Aquacult Nutr 26:1353–1368. https://doi.org/10.1111/anu.13092

    Article  CAS  Google Scholar 

  • Dam CTM, Elizur A, Ventura T, Salini M, Smullen R, Pirozzi I, Booth M (2019) Apparent digestibility of raw materials by yellowtail kingfish (Seriola lalandi). Aquaculture 511:734233. https://doi.org/10.1016/j.aquaculture.2019.734233

    Article  CAS  Google Scholar 

  • Dantagnan P, Hernández A, Borquez A, Mansilla A (2009) Inclusion of macroalgae meal (Macrocystis pyrifera) as feed ingredient for rainbow trout (Oncorhynchus mykiss): effect on flesh fatty acid composition. Aquacult Res 41:87–94. https://doi.org/10.1111/j.1365-2109.2009.02308.x

    Article  CAS  Google Scholar 

  • Davies SJ, Brown MT, Camilleri M (1997) Preliminary assessment of the seaweed Porphyra purpurea in artificial diets for thick-lipped grey mullet (Chelon labrosus). Aquaculture 152:249–258. https://doi.org/10.1016/S0044-8486(96)01513-X

    Article  Google Scholar 

  • Del Río ZO, Rodríguez MH, Ramirez LFB (2008) Thermal stress effect on tilapia Oreochromis mossambicus (Pisces: Cichlidae) blood parameters. Mar Freshw Behav Physiol 41:79–91. https://doi.org/10.1080/10236240801896223

    Article  Google Scholar 

  • Egerton S, Wan A, Murphy K, Collins F, Ahern G, Sugrue I, Busca K, Egan F, Muller N, Whooley J, McGinnity P, Culloty S, Ross RP, Stanton C (2020) Replacing fishmeal with plant protein in Atlantic salmon (Salmo salar) diets by supplementation with fish protein hydrolysate. Sci Rep 10:1–16. https://doi.org/10.1038/s41598-020-60325-7

    Article  CAS  Google Scholar 

  • Ezeabara C (2014) Determination of tannin content in various parts of six Citrus species. J Sci Res Rep 3:1384–1392. https://doi.org/10.9734/jsrr/2014/5832

    Article  Google Scholar 

  • FAO (2020) The state of world fisheries and aquaculture. Sustainability in action, Rome. https://doi.org/10.4060/ca9229en

  • Fuentes-Quesada JP, Cornejo-Granados F, Mata-Sotres JA, Ochoa-Romo JP, Rombenso AN, Guerrero-Renteria Y, Lazo JP, Pohlenz C, Ochoa-Leyva A, Viana MT (2020) Prebiotic agavin in juvenile totoaba, Totoaba macdonaldi diets, to relieve soybean meal-induced enteritis: growth performance, gut histology and microbiota. Aquaculture 00:1–20. https://doi.org/10.1111/anu.13151

    Article  CAS  Google Scholar 

  • Fuentes-Quesada JP, Viana MT, Rombenso AN, Guerrero-Rentería Y, Nomura-Solís M, Gomez-Calle V, Lazo JP, Mata-Sotres JA (2018) Enteritis induction by soybean meal in Totoaba macdonaldi diets: effects on growth performance, digestive capacity, immune response and distal intestine integrity. Aquaculture 495:78–89. https://doi.org/10.1016/j.aquaculture.2018.05.025

    Article  CAS  Google Scholar 

  • Garcia-Vaquero M, Hayes M (2016) Red and green macroalgae for fish and animal feed and human functional food development. Food Rev Intl 32:15–45. https://doi.org/10.1080/87559129.2015.1041184

    Article  CAS  Google Scholar 

  • Garnica LA, Lazo JP, Mata-Sotres JA, Guerrero Y. (2022) Effect of macroalgae as a functional ingredient in grow-out diets on the biological performance of totoaba, Totoaba macdonaldi. World Aquaculture 21: Book of Abstracts, World Aquaculture Society, Baton Rouge, LA, USA, p 89.

  • Gotteland M, Riveros K, Gasaly N, Carcamo C, Magne F, Liabeuf G, Beattie A, Rosenfeld S (2020) The algal pros and cons of using algal polysaccharides as prebiotics. Front Nutr 7:163. https://doi.org/10.3389/fnut.2020.00163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harborne JB (1985) Phytochemical methods. Brittonia. https://doi.org/10.2307/2806080

  • Howard DW, Lewis EJ, Keller BJ, Smith CS (2004) Histological techniques for marine bivalve mollusks and crustaceans. NOAA/National Centers for Coastal Ocean Science. NOS p 18. https://hdl.handle.net/1834/30812

  • Ibrahem MD, Fathi M, Mesalhy S, Abd El-Aty AM (2010) Effect of dietary supplementation of inulin and vitamin C on the growth, hematology, innate immunity, and resistance of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 29:241–246

    Article  CAS  PubMed  Google Scholar 

  • Juárez O, Fabiola, Lafarga-De la Cruz Juan Pablo, Lazo Rigoberto, Delgado-Vega Denisse, Chávez-García Edgar, López-Landavery Dariel, Tovar-Ramírez Clara Elizabeth, Galindo-Sánchez (2021) Transcriptomic assessment of dietary fishmeal partial replacement by soybean meal and prebiotics inclusion in the liver of juvenile Pacific yellowtail (Seriola lalandi) Molecular Biology Reports 48(11):7127–7140 https://doi.org/10.1007/s11033-021-06703-4

  • Kokou F, Sarropoulou E, Cotou E, Kentouri M, Alexis M, Rigos G (2017) Effects of graded dietary levels of soy protein concentrate supplemented with methionine and phosphate on the immune and antioxidant responses of gilthead sea bream (Sparus aurata L.). Fish Shellfish Immunol 64:111–121. https://doi.org/10.1016/j.fsi.2017.03.017

    Article  CAS  PubMed  Google Scholar 

  • Krogdahl A, Bakke-Mckellep AM, Baeverfjord G (2003) Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities and pancreatic response in Atlantic salmon (Salmo salar L). Aquacult Nutr 9:361–371

    Article  Google Scholar 

  • Krogdahl Å, Bakke-Mckellep AM, Røed KH, Baeverfjord G (2000) Feeding Atlantic salmon Salmo salar L. soybean products: effects on disease resistance (furunculosis), and lysozyme and IgM levels in the intestinal mucosa. Aquacult Nutr 6:77–84. https://doi.org/10.1046/j.1365-2095.2000.00129.x

    Article  Google Scholar 

  • Krogdahl A, Gajardo K, Kortner TM, Penn M, Gu M, Berge GM, Bakke AM (2015) Soya saponins induce enteritis in Atlantic salmon (Salmo salar L.). J Agric Food Chem 63:3887–3902. https://doi.org/10.1021/jf506242t

    Article  CAS  PubMed  Google Scholar 

  • Lazo JP, Davis DA (2000) Feed and ingredient evaluation in R. In: Stickney R (ed) Encyclopedia of Aquaculture. John Wiley & Sons, New York, pp 453–463

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/METH.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Fan J, Huang H, Zhou H, Cao Y, Zhang Y, Jiang W, Zhang W, Deng J, Tan B (2022) High dietary non-starch polysaccharides detrimental to nutrient digestibility, digestive enzyme activity, growth performance, and intestinal morphology in largemouth bass, Micropterus salmoides. Front Nutr 9:1015371. https://doi.org/10.3389/fnut.2022.1015371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madrid J (2019) Dietary lysine requirement for juvenile, Totoaba macdonaldi. Aquaculture 500:92–98. https://doi.org/10.1016/j.aquaculture.2018.10.003

  • Megías M, Molist P, Pombal MA (2022) Técnicas histológicas. Atlas de histología vegetal y animal. http://mmegias.webs.uvigo.es/6-tecnicas/1-introduccion.php. Accessed 14 July 2022

  • Minjarez-Osorio C, Castillo-Alvarado S, Gatlin DM, González-Félix ML, Perez-Velazquez M, Rossi W (2016) Plant protein sources in the diets of the sciaenids red drum (Sciaenops ocellatus) and shortfin corvina (Cynoscion parvipinnis): a comparative study. Aquaculture 453:122–129. https://doi.org/10.1016/j.aquaculture.2015.11.042

    Article  CAS  Google Scholar 

  • Miranda M, Lopez-Alonso M, Garcia-Vaquero M (2017) Macroalgae for functional feed development: applications in aquaculture, ruminant and swine feed industries. In: Newton P (ed) Seaweeds: biodiversity, environmental chemistry and ecological impacts, 1st edn. Nova Science Publichers, Inc, pp 133–153

  • Mohan VR, Tresina PS, Daffodil ED (2016) Antinutritional factors in legume seeds: characteristics and determination. In: Caballero B, Pm F, Toldrá F (eds) Encyclopedia of food and health, 1st edn. Academic Press, pp 211–2020. https://doi.org/10.1016/B978-0-12-384947-2.00036-2

    Chapter  Google Scholar 

  • Montaño-Vargas J, Shimada A, Vásquez C, Viana MT (2002) Methods of measuring feed digestibility in the Green abalone (Haliotis fulgens). Aquaculture 213:339–346

    Article  Google Scholar 

  • Murashita K, Hashimoto H, Takashi T, Eba T, Kumon K, Matsunari K, Soma S, Oku H, Furuita H, Yoshinaga G, Takeshi Y (2021) Characterization of digestive physiology in Pacific bluefin tuna Thunnus orientalis juveniles fed a raw fish feed and a commercial diet. Aquaculture 538:736562. https://doi.org/10.1016/j.aquaculture.2021.736562

    Article  CAS  Google Scholar 

  • Murray HM, Lall SP, Rajaselvam R, Boutilier LA, Blanchard B, Flight RM, Colombo S, Mohindra V, Douglas SE (2010) A nutrigenomic analysis of intestinal response to partial soybean meal replacement in diets for juvenile Atlantic halibut, Hippoglossus hippoglossus, L. Aquaculture 298:282–293. https://doi.org/10.1016/j.aquaculture.2009.11.001

    Article  CAS  Google Scholar 

  • NRC (1993) Nutrient requirements of fish. National Academy Press, USA. https://doi.org/10.17226/2115

    Book  Google Scholar 

  • Oliva-Teles A, Enes P, Peres H (2015) Replacing fishmeal and fish oil in industrial aquafeeds for carnivorous fish. In: Davis DA (ed) Feed and feeding practices in aquaculture. Woodhead Publishing, Porto, Portugal, pp 203–223

    Chapter  Google Scholar 

  • Refstie S, Baeverfjord G, Seim RR, Elvebø O (2010) Effects of dietary yeast cell wall β-glucans and MOS on performance, gut health, and salmon lice resistance in Atlantic salmon (Salmo salar) fed sunflower and soybean meal. Aquaculture 305:109–116. https://doi.org/10.1016/j.aquaculture.2010.04.005

    Article  CAS  Google Scholar 

  • Rueda-López S, Lazo JP, Reyes GC, Viana MT (2011) Effect of dietary protein and energy levels on growth, survival and body composition of juvenile Totoaba macdonaldi. Aquaculture 319:385–390. https://doi.org/10.1016/j.aquaculture.2011.07.007

    Article  CAS  Google Scholar 

  • Rumsey GL, Siwicki AK, Anderson DP, Bowser PR (1994) Effect of soybean protein on serological response, non-specific defense mechanisms, growth, and protein utilization in rainbow trout. Vet Immunol Immunopathol 41:323–339. https://doi.org/10.1016/0165-2427(94)90105-8

    Article  CAS  PubMed  Google Scholar 

  • Sado RY, Almeida Bicudo AJD, Cyrino JEP (2008) Feeding dietary mannan oligosacharides to juvenile Nile tilapia, Oreochromis niloticus, has no effect on haematological parameters and showed decreased feed consumption. J World Aquacult Soc 39:821–826

    Article  Google Scholar 

  • Sahlmann C, Sutherland BJG, Kortner TM, Koop BF, Krogdahl Å, Bakke AM (2013) Early response of gene expression in the distal intestine of Atlantic salmon (Salmo salar L.) during the development of soybean meal induced enteritis. Fish Shellfish Immunol 34:599–609. https://doi.org/10.1016/j.fsi.2012.11.031

    Article  CAS  PubMed  Google Scholar 

  • Santigosa E, Sánchez J, Médale F, Kaushik S, Pérez-Sánchez J, Gallardo MA (2008) Modifications of digestive enzymes in trout (Oncorhynchus mykiss) and sea bream (Sparus aurata) in response to dietary fish meal replacement by plant protein sources. Aquaculture 282:68–74. https://doi.org/10.1016/j.aquaculture.2008.06.007

    Article  CAS  Google Scholar 

  • Satoh S, Hernandez A, Tokoro T, Morishita T, Kiron V, Watanabe T (2003) Watanabe Comparison of phosphorus retention efficiency between rainbow trout (Oncorhynchus mykiss) fed a commercial diet and a low fish meal based diet. Aquaculture 224:271–282

    Article  CAS  Google Scholar 

  • Sinha AK, Kumar V, Makkar HPS, de Boeck G, Becker K (2011) Non-starch polysaccharides and their role in fish nutrition - a review. Food Chem 127:1409–1426. https://doi.org/10.1016/j.foodchem.2011.02.042

    Article  CAS  Google Scholar 

  • Soler-Vila A, Coughlan S, Guiry MD, Kraan S (2009) The red alga Porphyra dioica as a fish-feed ingredient for rainbow trout (Oncorhynchus mykiss): effects on growth, feed efficiency, and carcass composition. J Appl Phycol 21:617–624. https://doi.org/10.1007/s10811-009-9423-z

    Article  Google Scholar 

  • Tran-Ngoc KT, Haidar MN, Roem AJ, Sendão J, Verreth JAJ, Schrama JW (2019) Effects of feed ingredients on nutrient digestibility, nitrogen/energy balance and morphology changes in the intestine of Nile tilapia (Oreochromis niloticus). Aquacult Res 50:2577–2590. https://doi.org/10.1111/are.14214

    Article  CAS  Google Scholar 

  • Uran PA, Schrama JW, Rombout JHWM, Obach A, Jensen L, Koppe W, Verreth JAJ (2008) Soybean meal-induced enteritis in Atlantic salmon (Salmo salar L.) at different temperatures. Aquacult Nutr 14:324–330. https://doi.org/10.1111/j.1365-2095.2007.00534.x

    Article  CAS  Google Scholar 

  • Van Keulen J, Young BA (1977) Evaluation of acid-insoluble ash as a natural marker in rumiant digestibility studies. J Anim Sci 44:282–287

    Article  Google Scholar 

  • Vazirzadeh A, Marhamati A, Rabiee R, Faggio C (2020) Immunomodulation, antioxidant enhancement and immune genes up-regulation in rainbow trout (Oncorhynchus mykiss) fed on seaweeds included diets. Fish Shellfish Immunol 106:852–858. https://doi.org/10.1016/j.fsi.2020.08.048

    Article  CAS  PubMed  Google Scholar 

  • Villanueva-Gutiérrez E, González-Félix ML, Gatlin DM, Perez-Velazquez M (2020) Use of alternative plant and animal protein blends, in place of fishmeal, in diets for juvenile totoaba, Totoaba macdonaldi. Aquaculture 529:735698. https://doi.org/10.1016/j.aquaculture.2020.735698

    Article  CAS  Google Scholar 

  • Weiss D, Wardrop J (2000) Veterinary hematology. Wiley-Blackwell, Iowa, USA

    Google Scholar 

  • Zapata DB, Lazo JP, Herzka SZ, Viana MT (2016) The effect of substituting fishmeal with poultry by-product meal in diets for Totoaba macdonaldi juveniles. Aquacult Res 47:1778–1789. https://doi.org/10.1111/are.12636

    Article  CAS  Google Scholar 

  • Zhang J, Zhong L, Peng M, Chu W, Liu Z, Dai Z, Hu Y (2019) Replacement of fish meal with soy protein concentrate in diet of juvenile rice field eel Monopterus albus. Aquac Rep 15:100235. https://doi.org/10.1016/j.aqrep.2019.100235

    Article  Google Scholar 

  • Zhang W, Tan B, Deng J, Dong X, Yang Q, Chi S, Liu H, Zhang S, Xie S, Zhang H (2021) Effects of high level of fermented soybean meal substitution for fish meal on the growth, enzyme activity, intestinal structure protein and immune-related gene expression and intestinal flora in juvenile pearl gentian grouper. Aquacult Nutr 27:1433–1447. https://doi.org/10.1111/anu.13281

    Article  CAS  Google Scholar 

  • Zhou Z, Ringø E, Olsen RE, Song SK (2018) Dietary effects of soybean products on gut microbiota and immunity of aquatic animals: a review. Aquacult Nutr 24:644–665. https://doi.org/10.1111/anu.12532

    Article  CAS  Google Scholar 

  • Zhu R, Li L, Li M, Yu Z, Wang H, Wu L (2020) The effects of substituting fish meal with soy protein concentrate on growth performance, antioxidant capacity and intestinal histology in juvenile golden crucian carp, Cyprinus carpio × Carassius auratus. Aquac Rep 18:100435. https://doi.org/10.1016/j.aqrep.2020.100435

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Juan Carlos Vivanco, Acuario Oceanico, for donating the juvenile totoabas, and a special thanks to Roberto Marcos and Diana Cuesta from Algamar S.A. de C.V. for donating the commercial diets and the Mega Smart Kelp prebiotic. Thanks are also extended to MS Abelardo Campos and Yannet Guerrero for their technical support during the experimental trial and sample processing.

Funding

This work was supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT, México) through the Centro de Investigación Científica y Educación Superior de Ensenada, Baja California (CICESE) internal projects (grant number 623112 to JPL, 623159). The funding sources had no involvement in study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Data availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

JPL: conceptualization; funding acquisition; investigation; methodology; project administration; resources; supervision; writing—review and editing.

LGG: conceptualization; methodology; writing—review and editing.

JMS: data curation; investigation; methodology; writing—review and editing.

All authors reviewed the manuscript.

Corresponding author

Correspondence to Juan Pablo Lazo.

Ethics declarations

Ethical approval

This research meets the ARRIVE, European Union Council (2010/63/EU), and Mexican Government (NOM-062—ZOO-1999) guidelines for the production, care, and use of experimental animals. Fish were humanely euthanized according to CICESE’s fish culture animal-care standards and protocols (Juarez et al, 2021).

Conflict of interest

The authors declare no competing interests.

Additional information

Handling editor: Daniel Merrifield

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garnica-Gómez, L.A., Mata-Sotres, J.A. & Lazo, J.P. Effect of macroalgae as a functional ingredient in grow-out diets on the biological performance, digestive capacity, and immune response of totoaba, Totoaba macdonaldi. Aquacult Int 32, 979–998 (2024). https://doi.org/10.1007/s10499-023-01197-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-023-01197-2

Keywords

Navigation