Skip to main content
Log in

Photoreduction of Fe(III) in the Acidic Mine Pit Lake of San Telmo (Iberian Pyrite Belt): Field and Experimental Work

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Light-induced reduction of dissolved and particulate Fe(III) has been observed to occur in the surface waters of the acidic mine pit lake of San Telmo (143,600 m2, pH 2.8, Fetotal = 2.72 mM). This photochemical production of Fe(II) is directly related to the intensity of solar radiation and competes with biologically catalyzed reactions (i.e., bacterial re-oxidation of Fe(II)) and physical processes (including ionic diffusion, advection, and convection, which tend to homogenize the epilimnetic concentration of Fe(II) at every moment). Therefore, diel cycles of Fe(II) concentration are observed at the lake surface, with minimum values of 10–20 μM Fe(II) (0.35–0.70% Fetotal) at the sunrise and sunset, and maximum values of 90 μM Fe(II) (3.2% Fetotal) at midday in August 2005. Field and experimental work conducted in San Telmo and other pit lakes of the Iberian Pyrite Belt (IPB) (pH 2.3–3.1, Fetotal = 0.34–17 mM) indicate that the kinetics of the photoreductive reaction is zero-order and is independent of the Fe(III) concentration, but highly dependent on the intensity of solar radiation and temperature. Experimental work conducted with natural Fe(III) minerals (schwertmannite, goethite, and lepidocrocite) suggests that dissolved organic matter is an important factor contributing to the photochemical production of Fe(II). The wavelengths involved in the photoreduction of Fe(III) include not only the spectrum of UV-A radiation (315–400 nm), but also part of the photosynthetically active radiation (PAR, 400–700 nm). This finding is of prime importance for the understanding of the photoreduction processes in the pit lakes of the IPB, because the photo-reactive depth is not limited to the penetration depth of UV-A radiation (upper 1–10 cm of the water column depending on the TDS content), but it is approximately equal to the penetration depth of PAR (e.g., first 4–6 m of the water column in San Telmo on July 2007); thus, increasing the importance of photochemical processes in the hydro(bio)geochemistry of pit lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Amon RMW, Benner R (1996) Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system. Geochim Cosmochim Acta 60:1783–1792. doi:10.1016/0016-7037(96)00055-5

    Article  Google Scholar 

  • Butler TW, Seitz JC (2006) Apparent seasonal variations in iron photoreduction in acidic discharge from a former pyrite mine, Oakland, California. Appl Geochem 21:1109–1122. doi:10.1016/j.apgeochem.2006.03.003

    Article  Google Scholar 

  • Changha Lee JY (2004) Temperature dependence of hydroxyl radical formation in the hv/Fe3+/H2O2 and Fe3+/H2O2 systems. Chemosphere 56:923–934. doi:10.1016/j.chemosphere.2004.04.047

    Article  Google Scholar 

  • Collienne RH (1983) Photoreduction of iron in the epilimnion of acidic lakes. Limnol Oceanogr 28:83–100

    Google Scholar 

  • David F, David PG (1976) Photoredox chemistry of iron (III) chloride and iron (III) perchlorate in aqueous media. A comparative study. J Phys Chem 80:579–583. doi:10.1021/j100547a005

    Article  Google Scholar 

  • Emmenegger L, Schönenberger R, Sigg L, Sulzberger B (2001) Light-inducted redox cycling of iron circumneutral lakes. Limnol Oceanogr 46:49–61

    Google Scholar 

  • Faust BC, Hoigne J (1990) Photolysis of Fe(III)-hydroxy complexes as sources of OH radicals in clouds, fog and rain. Atmos Environ 24A:79–89

    Google Scholar 

  • Feng W, Nansheng D (2000) Photochemistry of hydrolytic iron (III) species and photoinduced degradation of organic compounds. Chemosphere 41:1137–1147. doi:10.1016/S0045-6535(00)00024-2

    Article  Google Scholar 

  • Friese K, Herzsprung P, Witter B (2002) Photochemical degradation of organic carbon in acidic mining lakes. Acta Hydrochim Hydrobiol 30:141–148. doi:10.1002/1521-401X(200211)30:2/3<141::AID-AHEH141>3.0.CO;2-F

    Article  Google Scholar 

  • Fukushima M, Tatsumi K (2001) Degradation characteristics of humic acid during photo-Fenton processes. Environ Sci Technol 35:3683–3690. doi:10.1021/es0018825

    Article  Google Scholar 

  • Gammons CH, Nimick DA, Parker SR, Cleasby TE, McCleskey RB (2005a) Diel behaviour of iron and other heavy metals in a mountain stream with acidic to neutral pH: Fisher Creek, Montana, USA. Geochim Cosmochim Acta 69:2505–2516. doi:10.1016/j.gca.2004.11.020

    Article  Google Scholar 

  • Gammons CH, Wood SA, Nimick DA (2005b) Diel behaviour of rare earth elements in a mountain stream with acidic to neutral pH. Geochim Cosmochim Acta 69:3747–3758. doi:10.1016/j.gca.2005.03.019

    Article  Google Scholar 

  • Gammons CH, Nimick DA, Parker SR, Snyder DM, McCleskey RB, Amils R et al (2008) Photoreduction fuels biogeochemical cycling of iron in Spain’s acid rivers. Chem Geol 252:202–213. doi:10.1016/j.chemgeo.2008.03.004

    Article  Google Scholar 

  • Gopola G, Aravamudan G, Veukatarma NC (1955) Estimation of ferric salts through photochemical reduction with oxalic and lactic acids. Z Anal Chem 146:161–166. doi:10.1007/BF00439583

    Article  Google Scholar 

  • Gundersen P, Steinnes E (2003) Influence of pH and TOC concentration on Cu, Zn, Cd, and Al speciation in rivers. Water Res 37:307–318. doi:10.1016/S0043-1354(02)00284-1

    Article  Google Scholar 

  • Hatchard CG, Parker A (1956) A new sensitive chemical actinometer 2. Potassium ferrioxalate as a standard chemical actinometer. Proc R Soc Lond A 235:518–536

    Article  Google Scholar 

  • Herzsprung P, Friese K, Packroff G, Schimmele M, Wendt-Potthoff K, Winkler M (1998) Vertical and annual distribution of ferric and ferrous iron in acidic mining lakes. Acta Hydrochim Hydrobiol 26:253–262. doi:10.1002/(SICI)1521-401X(199809)26:5<;253::AID-AHEH253>3.0.CO;2-S

    Article  Google Scholar 

  • Hoigne J, Zuo Y, Nowell L (1994) Photochemical reactions in atmospheric waters: role of dissolved iron species. In: Helz GR, Zepp RG, Grosby DG (eds) Aquatic and surface Photochemistry. Lewis Publishers, CRC Press, Boca Raton, pp 75–84

    Google Scholar 

  • Hrncir DC, McKnight D (1998) Variation in photoreactivity of iron hydroxides taken from an acidic mountain stream. Environ Sci Technol 32:2137–2141. doi:10.1021/es970986l

    Article  Google Scholar 

  • Kimball BA, McKnight DM, Wetherbee GA, Harnish RA (1992) Mechanisms of iron photoreduction in a metal-rich, acidic stream (St.Kevin Gulch, Colorado, U.S.A). Chem Geol 96:227–239. doi:10.1016/0009-2541(92)90130-W

    Article  Google Scholar 

  • Kuma K, Nishiola J, Matsunaga K (1996) Controls on iron (III) hydroxide solubility in seawater: the influence of pH and natural organic chelators. Limnol Oceanogr 41:396–407

    Google Scholar 

  • Madsen EL, Morgan MD, Good RE (1986) Simultaneous photoreduction and microbial oxidation of iron in a stream in the New Jersey Pineland. Limnol Oceanogr 3:832–838

    Google Scholar 

  • Mata Prasad, Mohile BV (1936) Photoreduction of ferric chloride in alcoholic solutions in the light of a quartz mercury lamp. Proc Natl Acad Sci India 6:261–268

    Google Scholar 

  • McKnight DM, Bencala KE (1988) Diel variation in iron chemistry in an acidic stream in the Colorado Rocky Mountains. U.S.A. Arct Alp Res 20:492–500. doi:10.2307/1551347

    Article  Google Scholar 

  • McKnight DM, Bencala KE (1989) Reactive iron transport in an acidic mountain stream in Summit County, Colorado: a hydrologic perspective. Geochim Cosmochim Acta 53:2225–2234. doi:10.1016/0016-7037(89)90346-3

    Article  Google Scholar 

  • McKnight DM, Duren SM (2004) Biogeochemical processes controlling midday ferrous iron maxima in stream waters affected by acid rock drainage. Appl Geochem 19:1075–1084. doi:10.1016/j.apgeochem.2004.01.007

    Article  Google Scholar 

  • McKnight DM, Kimball BA, Bencala KE (1988) Iron photoreduction and oxidation in an acidic mountain stream. Science 240:637–640. doi:10.1126/science.240.4852.637

    Article  Google Scholar 

  • McKnight DM, Kimball BA, Runkel RL (2001) pH dependence of iron photoreduction in a Rocky Mountain stream affected by acid mine drainage. Hydrolog Proc 15:1979–1992. doi:10.1002/hyp.251

    Article  Google Scholar 

  • McMahon JW (1967) The influence of light and acid on the measurement of ferrous iron in lake water. Limnol Oceanogr 12:437–442

    Google Scholar 

  • McMahon JW (1969) The annual and diurnal variation in the vertical distribution of acid-soluble ferrous and total iron in a small dimictic lake. Limnol Oceanogr 14:357–367

    Article  Google Scholar 

  • Mullaugh KM, Luther GWIII, Ma S, Moore TS, Yücel M, Becker E et al (2008) Voltammetric (micro)electrodes for the in situ study of Fe2+ oxidation kinetics in hot springs and S2O3 2− production at hydrothermal vents. Electroanalysis 20:280–290. doi:10.1002/elan.200704056

    Article  Google Scholar 

  • Neiger R, Neuschul P (1936) The photochemical reactions of the iron gluconates. Z Phys Chem Abt A 177:355–364

    Google Scholar 

  • Nordstrom DK (1985) The rate of ferrous iron oxidation in a stream receiving acid mine effluent. Selected papers in the Hydrologic Sciences. US Geol Surv Water Supply Pap 2270: 113–119

    Google Scholar 

  • Nordstrom DK (2003) Effects of microbiological and geochemical interactions in mine drainage. In: Jambor JL, Blowes DW, Ritchie AIM (eds) Environmental aspects of mine wastes, short course vol 31. Mineral Association of Canada, Canada, pp 227–238

  • Parker CA (1953) A new sensitive chemical actinometer. 1. Some trials with potassium ferrioxalate. Proc R Soc Lond A 220:104–116

    Article  Google Scholar 

  • Pellicori DA, Gammons CH, Poulson SR (2005) Geochemistry and stable isotope composition of the Berkeley pit lake and surrounding mine waters, Butte, Montana. Appl Geochem 20:2116–2137

    Google Scholar 

  • Rijkenberg MJA, Fischer AC, Kroon JJ, Gerringa LJA, Timmermans KR, Wolterbeek BT et al (2005) The influence of UV irradiation on the photoreduction of iron in the Southern Ocean. Mar Chem 93:119–129. doi:10.1016/j.marchem.2004.03.021

    Article  Google Scholar 

  • Rijkenberg MJA, Gerringa LJA, Carolus VE, Velzeboer I, de Baar HJW (2006) Enhancement and inhibition of iron photoreduction by individual ligands in open ocean seawater. Geochim Cosmochim Acta 70:2790–2805. doi:10.1016/j.gca.2006.03.004

    Article  Google Scholar 

  • Sánchez-España FJ, López-Pamo E, Santofimia E (2007a) The oxidation of ferrous iron in acidic mine effluents from the Iberian Pyrite Belt (Odiel river watershed, Huelva): field and laboratory rates. J Geochem Explor 92:120–132. doi:10.1016/j.gexplo.2006.08.010

    Article  Google Scholar 

  • Sánchez-España FJ, Santofimia E, González-Toril E, San Martín-Úriz P, López-Pamo E, Amils R (2007b) Physicochemical and microbiological characterization of a meromictic acidic mine pit lake in the Iberian Pyrite Belt (Spain). In: Rosa Cidu, Franco Frau (eds) Proceedings of the international mine water association IMWA 2007 Conference, Cagliari, Sardinia, Italy, 27–31 May 2007, pp 447–451

  • Sánchez-España FJ, López-Pamo E, Santofimia E, Diez-Ercilla M (2008) The acidic mine pit lakes of the Iberian Pyrite Belt: An approach to their physical limnology and hydrogeochemistry. Appl Geochem 23:1260–1287. doi:10.1016/j.apgeochem.2007.12.036

    Article  Google Scholar 

  • Sherman DM (2005) Electronic structures of iron (III) and manganese (IV) (hydr)oxide minerals: Thermodynamics of photochemical reductive dissolution in aquatic environments. Geochim Cosmochim Acta 69:3249–3255. doi:10.1016/j.gca.2005.01.023

    Article  Google Scholar 

  • Sivan O, Erel Y, Mandler D, Nishri A (1998) The dynamic redox chemistry of iron in the epilimnion of Lake Kinneret (Sea of Galilee). Geochim Cosmochim Acta 62:565–576. doi:10.1016/S0016-7037(97)00376-1

    Article  Google Scholar 

  • Sullivan AB, Drever JI, McKnight DM (1998) Diel variation in element concentration, Peru Creek, Summit County, Colorado. J Geochem Explor 64:141–145. doi:10.1016/S0375-6742(98)00027-2

    Article  Google Scholar 

  • Sulzberger B, Laubscher H (1995) Reactivity of various types of iron (III) oxides towards light-induced dissolution. Mar Chem 50:103–115. doi:10.1016/0304-4203(95)00030-U

    Article  Google Scholar 

  • Sulzberger B, Schnoor JL, Giovanoli R, Hering JG, Zobrist J (1990) Biogeochemistry of iron in an acidic lake. Aquat Sci 52:56–74. doi:10.1007/BF00878241

    Article  Google Scholar 

  • Tate CM, Broshear RE, McKNight DM (1995) Phosphate dynamics in an acidic mountain stream: interactions involving algal uptake, sorption by iron oxide, and photoreduction. Limnol Oceanogr 40:938–946

    Google Scholar 

  • Trouwborst RE, Johnston A, Koch G, Luther GWIII, Pierson BK (2007) Biogeochemistry of Fe(II) oxidation in a photosynthetic microbial mat: implications for Precambrian Fe(II) oxidation. Geochim Cosmochim Acta 71:4629–4643. doi:10.1016/j.gca.2007.07.018

    Article  Google Scholar 

  • Uher G, Andreae MO (1997) Photochemical production of carbonyl sulphide in North Sea Water: a process study. Limnol Oceanogr 42:432–442

    Google Scholar 

  • Voelker BM, Morel FMM, Sulzberger B (1997) Iron redox cycling in surface waters: effects of humic substances and light. Environ Sci Technol 31:1004–1011. doi:10.1021/es9604018

    Article  Google Scholar 

  • Waite TD, Morel FMM (1984) Photoreductive dissolution of colloidal iron oxides: effect of citrate. J Colloid Interface Sci 102:121–137. doi:10.1016/0021-9797(84)90206-6

    Article  Google Scholar 

  • Weschler CJ, Mandich ML, Graedel TE (1986) Speciation, photosensitivity, and reactions of transition metal ions in atmospheric droplets. J Geophys Res 91:5189–5204. doi:10.1029/JD091iD04p05189

    Article  Google Scholar 

  • Zuo Y, Hoigne J (1992) Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron (III)-oxalate complexes. Environ Sci Technol 26:1014–1022. doi:10.1021/es00029a022

    Article  Google Scholar 

Download references

Acknowledgement

The present work was funded by the Geological Survey of Spain (IGME) through a research grant to MDE. The authors wish to thank Jesús Reyes for his help during the laboratory experiments. We greatly appreciate the detailed and constructive comments made by Christopher Gammons on a previous version of this manuscript, which helped to improve the quality of the article, and also the editorial comments made by George W. Luther.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sánchez España.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diez Ercilla, M., López Pamo, E. & Sánchez España, J. Photoreduction of Fe(III) in the Acidic Mine Pit Lake of San Telmo (Iberian Pyrite Belt): Field and Experimental Work. Aquat Geochem 15, 391–419 (2009). https://doi.org/10.1007/s10498-008-9044-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-008-9044-1

Keywords

Navigation