Skip to main content
Log in

Interaction of Freshly Precipitated Silica Gel with Aqueous Silicic Acid Solutions under Ambient and Near Neutral pH-conditions: A Detailed Analysis of Linear Rate Law

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Interaction of freshly precipitated silica gel with aqueous solutions was studied at laboratory batch experiments under ambient and near neutral pH-conditions. The overall process showed excellent reversibility: gel growth could be considered as an opposite process to dissolution and a linear rate law could be applied to experimental data. Depending on the used rate law form, the resulting rate constants were sensitive to errors in parameters/variables such as gel surface area, equilibrium constants, Si-fluxes, and reaction quotients. The application of an Integrated Exponential Model appeared to be the best approach for dissolution data evaluation. It yielded the rate constants k dissol ∼ (4.50 ± 0.68) × 10−12 and k growth ∼ (2.58 ± 0.39) × 10−9 mol m−2 s−1 for zero ionic strength. In contrast, a Differential Model gave best results for growth data modeling. It yielded the rate constants k dissol ∼ (1.14 ± 0.44) × 10−11 and k growth ∼ (6.08 ± 2.37) × 10−9 mol m−2 s−1 for higher ionic strength (I ∼ 0.04 to 0.11 mol L−1). The found silica gel solubility at zero ionic strength was somewhat lower than the generally accepted value. Based on the \({}^{298}K_{\rm SS}^{(I=0)} = 10^{-2.754\pm 0.017}\) and \(^{298}K_{\rm DBP}^{(I=0)} = 10^{-2.728\pm 0.003},\) standard Gibbs free energy of silica gel formation was calculated as \(\Updelta{G}_{\rm f}^0(298\,{\rm K}) \sim -\hbox{850,463} \pm 98\hbox{ J mol}^{-1}\) and  −850,318 ± 20 J mol−1, respectively. Activation energies for silica gel dissolution and growth were determined as \(E_{\rm A}^{\rm dissol} \sim 62.0\pm 3.2\,\hbox{kJ mol}^{-1}\) and \(E_{\rm A}^{\rm growth} \sim 48.8\pm 4.4\,\hbox{ kJ mol}^{-1},\) respectively. An universal value for growth of any silica polymorph, \(E_{\rm A}^{\rm growth} \sim 37.4 \pm 9.4\,\hbox{kJ mol}^{-1},\) is not consistent with the value for silica gel growth, which questions the hypothesis about one unique activated complex controlling the silica polymorph growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A :

Pre-exponential factor of the Arrhenius equation

{A}:

Total surface area (m2)

{A i }:

Surface area of single gel particle (m2)

a Si :

Activity of silicic acid

\({a}_{\rm Si}^{\rm eq} \) :

Equilibrium silicic acid activity

a gel :

Silica gel activity

\({a}_{\rm gel}^{\rm eq} \) :

Equilibrium silica gel activity

AT:

Affinity term

a w :

Water activity

d i :

Gel particle diameter (m)

\(\Updelta G_{\rm r}\) :

Gibbs free energy of an overall reaction

\(\Updelta G_{\rm {gel}{-}{w}}\) :

Gibbs free energy of the silica gel–water reaction (J mol−1)

\(\Updelta G_{\rm f}^{0}\) :

Standard Gibbs free energy of formation (J mol−1)

\(\Updelta x/x\) :

Relative error in x-variable

E A :

Activation energy

I :

Ionic strength (mol L−1)

j :

Overall Si-flux from silica into solution (mol s−1)

j norm :

Overall Si-flux from silica into solution normalized to unitary surface area (mol m−2 s−1)

j d :

Partial Si-flux linked to silica dissolution (mol s−1)

j g :

Partial Si-flux linked to silica growth (mol s−1)

k (pH,T) :

A rate constant, pH and temperature-dependent

k d :

Dissolution rate constant (mol m−2 s−1)

k g :

Growth rate constant (mol m−2 s−1)

K PHREEQC :

Equilibrium constant taken from PHREEQC database

K DBP :

Equilibrium constant based on detailed balancing principle

K SS :

Equilibrium constant based on steady-state concentrations

N :

Gel particle number

n :

Rate law empirical constant

m :

Rate law empirical constant

M Si :

Total Si-content in solution (mol)

\(M_{\rm Si}^{0}\) :

Initial Si-content in solution (mol)

p :

Parameter of regression power function

q :

Parameter of regression power function

Q (gel–w) :

Ion activity quotient of silica gel–water reaction

r :

Parameter of regression power function

R :

Gas constant (J mol−1 K−1)

ρgel :

Silica gel density (g cm−3)

SI gel :

Saturation index with respect to silica gel

\(c_{{\rm H}_4{\rm SiO}_4}\) :

Silicic acid concentration (mol L−1)

\(c_{{\rm H}_4{\rm SiO}_4}^{0}\) :

Initial silicic acid concentration (mol L−1)

t :

Time (s)

T :

Temperature (K)

V :

Volume of solution (L)

W gel :

Total weight of silica gel sample (g)

W i :

Weight of single gel particle (g)

References

  • Aargaard P, Helgeson HC (1982) Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions I. Theoretical consideration. Am J Sci 282:237–285

    Article  Google Scholar 

  • Bartolotta A, Carini G, Angelo GD, Ferrari M, Fontana A, Montagna M, Rossi F, Tripodo G (2001) A study of Raman spectroscopy and low-temperature specific heat in gel-synthesized amorphous silica. J Non-Cryst Solids 280:249–254

    Article  Google Scholar 

  • Berger G, Cadore E, Schott J, Dove PM (1994) Dissolution rate of quartz in lead and sodium electrolyte-solutions between 25 and 300°C: Effect of the nature of surface complexes and reaction affinity. Geochim Cosmochim Acta 58:541–551

    Article  Google Scholar 

  • Brady PV, Walther JV (1990) Kinetics of quartz dissolution at low temperatures. Chem Geol 82:253–264

    Article  Google Scholar 

  • Burch TE, Nagy KL, Lasaga AC (1993) Free energy dependence of albite dissolution kinetics at 80°C, pH 8.8. Chem Geol 105:137–162

    Article  Google Scholar 

  • Carroll S, Mroczek E, Alai M, Ebert M (1998) Amorphous silica precipitation (60 to 120°C): Comparison of laboratory and field rates. Geochim Cosmochim Acta 62:1379–1396

    Article  Google Scholar 

  • Cox JD, Wagman DD, Medvedev VA (1989) CODATA Key Values for Thermodynamics. Hemisphere Publishing Corp.

  • Dieudonné P, Alaoui AH, Delord P, Phalippou J (2000) Transformation of nanostructure of silica gels during drying. J Non-Cryst Solids 262:155–161

    Article  Google Scholar 

  • Dove PM (1994) The dissolution kinetics of quartz in sodium-chloride solutions at 25°C to 300°C. Am J Sci 294:665–712

    Article  Google Scholar 

  • Dove PM, Crerar DA (1990) Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor. Geochim Cosmochim Acta 54:955–969

    Article  Google Scholar 

  • Dove PM, Elston SF (1992) Dissolution kinetics of quartz in sodium chloride solutions: analysis of existing data and a rate model for 25°C. Geochim Cosmochim Acta 56:4147–4156

    Article  Google Scholar 

  • Dove PM, Rimstidt JD (1994) Silica–water interactions. In: Heaney PJ, Prewitt CT, Gibbs GV (eds) Silica: physical behavior, geochemistry and materials applications, Rev Mineral Geochem 29. Mineralogical Society of America, Chelsea Michigan, pp 259–308

  • Faimon J (2005) Total Dynamics of quartz–water system at ambient conditions. Aquat Geochem 11:139–172

    Article  Google Scholar 

  • Fleming BA (1986) Kinetics of reaction between silicic acid and amorphous silica surfaces in NaCl solutions. J Colloid Interface Sci 110:40–64

    Article  Google Scholar 

  • Franklin SP, Hajash A Jr, Dewers TA, Tieh TT (1994) The role of carboxylic acids in albite and quartz dissolution: an experimental study under diagenetic conditions. Geochim Cosmochim Acta 58:4259–4279

    Article  Google Scholar 

  • Furukawa Y, O’Reilly SE (2007) Rapid precipitation of amorphous silica in experimental systems with nontronite (NAu-1) and Shewanella oneidensis MR-1. Geochim Cosmochim Acta 71:363–377

    Article  Google Scholar 

  • Ganor J, Huston TJ, Walter LM (2005) Quartz precipitation kinetics at 180°C in NaCl solutions—Implications for the usability of the principle of detailed balancing. Geochim Cosmochim Acta 69:2043–2056

    Article  Google Scholar 

  • Gautier J-M, Oelkers EH, Schott J (2001) Are quartz dissolution rates proportional to B.E.T surface areas? Geochim Cosmochim Acta 65:1059–1070

    Article  Google Scholar 

  • Greenwood JE, Truesdale VW, Rendell AR (2001) Biogenic silica dissolution in seawater—in vitro chemical kinetics. Progr Oceanogr 48:1–23

    Article  Google Scholar 

  • Gunnarsson I, Arnórsson S (2000) Amorphous silica solubility and the thermodynamic properties of H4SiO°4 in the range of 0° to 350°C at Psat. Geochim Cosmochim Acta 64:2295–2307

    Article  Google Scholar 

  • Helgeson HC, Murphy WM, Aagaard P (1984) Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. II. Rate constants. effective surface area, and the hydrolysis of feldspar. Geochim Cosmochim Acta 48:2405–2432

    Article  Google Scholar 

  • Hiemstra T, Van Riemsdijk WH (1990) Multiple activated complex dissolution of metal (hydr)oxides: a thermodynamic approach applied to quartz. J Colloid Interface Sci 136:132–150

    Article  Google Scholar 

  • Icenhower JP, Dove PM (2000) The dissolution kinetics of amorphous silica into sodium chloride solutions: effects of temperature and ionic strength. Geochim Cosmochim Acta 64:4193–4203

    Article  Google Scholar 

  • Kamatani A (1982) Dissolution rates of silica from diatoms decomposing at various temperatures. Mar Biol 68:91–96

    Article  Google Scholar 

  • Lasaga AC (1981a) Rate laws of chemical reactions. In: Lasaga AC, Kirkpatrick RJ (eds) Kinetics of geochemical processes, Rev Mineral Geochem, vol 8. Mineralogical Society of America, Chelsea Michigan, pp 1–68

  • Lasaga AC (1981b) Transition state theory. In: Lasaga AC, Kirkpatrick RJ (eds) Kinetics of geochemical processes, Rev Mineral Geochem, vol 8. Mineralogical Society of America, Chelsea Michigan, pp 135–169

  • Lasaga AC, Soler JM, Ganor J, Burch TE, Nagy KL (1994) Chemical weathering rate laws and global geochemical cycles. Geochim Cosmochim Acta 58:2361–2386

    Article  Google Scholar 

  • Mazer JJ, Walther JV (1994) Dissolution kinetics of silica glass as a function of pH between 40 and 85°C. J Non-Cryst Solids 170:32–45

    Article  Google Scholar 

  • Nagy KL, Lasaga AC (1992) Dissolution and precipitation kinetics of gibbsite at 80°C and pH 3. The dependence on solution saturation state. Geochim Cosmochim Acta 56:3093–3111

    Article  Google Scholar 

  • Papoulis A (1991) Probability, random variables, and stochastic processes, 3rd edn. McGraw-Hill Inc, p 666

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2) a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey, Water Resources Investigations. Report 99-4259, pp 312

  • Renders PJN, Gammons CH, Barnes HL (1995) Precipitation and dissolution rate constants for cristobalite from 150 to 300°C. Geochim Cosmochim Acta 59:77–85

    Article  Google Scholar 

  • Rickert D, Schlüter M, Wallmann K (2002) Dissolution kinetics of biogenic silica from the water column to the sediments. Geochim Cosmochim Acta 66:439–455

    Article  Google Scholar 

  • Rimstidt JD, Barnes HL (1980) The kinetics of silica–water reactions. Geochim Cosmochim Acta 44:1683–1699

    Article  Google Scholar 

  • Robie RA, Hemingway BS, Fisher JR (1978) Thermodynamic properties of minerals & related substances at 298.15K and 1 Bar (105 Pascals) pressure and at higher temperatures. US Geological Survey Bullet 1452. United States Government Printing Office, Washington

  • Seidel A, Löbbus M, Vogelsberger W, Sonnefeld J (1997) The kinetics of dissolution of silica ‘Monospher’ into water at different concentrations of background electrolyte. Solid State Ionics 101–103:713–719

    Article  Google Scholar 

  • Tester JW, Worley WG, Robinson BA, Grigsby CO, Feerer JL (1994) Correlating quartz dissolution kinetics in pure water from 25°C to 625°C. Geochim Cosmochim Acta 58:2407–2420

    Article  Google Scholar 

  • Truesdale VW, Smith CJ (1976) The automatic determination of silicate dissolved in nature fresh water by means of procedures involving the use of either α- or β-molybdosilicic acid. The Analyst 101:19–31

    Article  Google Scholar 

  • Truesdale VW, Greenwood JE, Rendell A (2005) The rate-equation for biogenic silica dissolution in seawater—new hypotheses. Aquat Geochem 11:319–343

    Article  Google Scholar 

  • Van Cappellen P, Qiu L (1997a) Biogenic silica dissolution in sediments of the Southern Ocean. I. Solubility. Deep-Sea Res. Part II-Top Stud Oceanogr 44:1109–1128

    Article  Google Scholar 

  • Van Cappellen P, Qiu L (1997b) Biogenic silica dissolution in sediments of the Southern Ocean. II. Kinetics. Deep-Sea Res. Part II-Top Stud Oceanogr 44:1129–1149

    Article  Google Scholar 

  • Vogelsberger W, Löbbus M, Sonnefeld J, Seidel A (1999) The influence of ionic strength on the dissolution process of silica. Colloids Surf A: Physicochem Eng Aspects 159:311–319

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Ondra Sracek for critical reading of the manuscript. Anonymous referee is thanked for inspiring comments. The work was supported by the MSM0021622412 grants of Ministry of Education, Youth and Sports of Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Faimon.

Appendices

Appendix A

Table 9 Experimental data

Appendix B: Error Propagation

In general, a propagation of errors in a F(x i ) function with uncorrelated variables is given by

$$ \Updelta {F}^{2}=\left[ {\left({\frac{\partial{F}}{\partial {x}_1 }} \right)\Updelta {x}_1 } \right]^{2}+\left[ {\left({\frac{\partial{F}}{\partial {x}_2 }} \right)\Updelta {x}_2 } \right]^{2}\ldots+\left[ {\left({\frac{\partial{F}}{\partial {x}_n }} \right)\Updelta {x}_n } \right]^{2}=\sum_i {\left[ {\left({\frac{\partial{F}}{\partial {x}_i }} \right)\Updelta {x}_i } \right]^{2}}, $$
(A1)

where \(\Updelta{ x}_{i}\) is an absolute error of x i -variable (see, e.g., Papoulis 1991).

2.1 Saturation Index Error

The uncertainty in saturation index was derived from the expression

$$ {SI} = \log (Q/K). $$
(A2)

A rewriting gives

$$ {SI} = \frac{1}{\hbox{ln} 10}\hbox{ln} \left({\frac{{Q}}{{K}}} \right). $$
(A3)

Developing of A3 according to Eq. A1 with respect to Q a K gives

$$ \Updelta{SI}^{2}=\left({\frac{1}{\hbox{ln} 10}} \right)^{2}\left({\frac{1}{{Q}}} \right)^{2}\Updelta {Q}^{2}+\left({\frac{1}{\hbox{ln} 10}} \right)^{2}\left({\frac{1}{{K}}} \right)^{2}\Updelta {K}^{2}. $$
(A4)

After dividing by the squared Eq. A3, it becomes

$$ \left({\frac{\Updelta {SI}}{{SI}}} \right)^{2}=\left({\frac{1}{\hbox{ln}10\,{SI}}} \right)^{2}\left({\frac{\Updelta {Q}}{{Q}}} \right)^{2}+\left({\frac{1}{\hbox{ln} 10\,{SI}}} \right)^{2}\left({\frac{\Updelta{ K}}{{K}}} \right)^{2}. $$
(A5)

and, after substituting for the multiplicative terms,

$$ \left({\frac{\Updelta {SI}}{{SI}}} \right)^{2}=\Uplambda^2\left({\frac{{Q}}{{Q}}}\right)^{2}+\Uplambda^2\left({\frac{\Updelta{ K}}{{K}}} \right)^{2}. $$
(A6)

where Λ  = 1/(ln10 SI). The significance of the multiplicative term Λ is enormous close to equilibrium where \(\lim\limits_{{Q}\rightarrow {K}} [1/\log ({Q/K})]=\infty.\)

Based on the relation \(\Updelta{G}_{\rm {gel}{-}{w}} = 2.3{RTSI}_{\rm {gel}{-}{w}}\), the relative error in \(\Updelta G_{\rm {gel}{-}{w}}\) is the same as in SI.

2.2 Affinity Term Error

The error in affinity term was derived from the equation

$$ \hbox{AT}=1-\hbox{e}^{\frac{\Updelta {G}}{RT}}=1-\frac{{Q}}{{K}}. $$
(A7)

Based on the evaluation of Eq. A7 according to A1 with respect to Q and K, it is

$$ (\Updelta \hbox{AT})^{2}=\frac{1}{{K}^{2}}\Updelta {Q}^{2}+\frac{{Q}^{2}}{{K}^{4}}\Updelta {K}^{2}. $$
(A8)

Dividing by A 2 yields

$$ \left({\frac{\Updelta \hbox{AT}}{\hbox{AT}}} \right)^{2}=\left({\frac{{Q}}{{K}-{Q}}} \right)^{2}\left({\frac{\Updelta {Q}}{{Q}}} \right)^{2}+\left({\frac{{Q}}{{K}-{Q}}} \right)^{2}\left({\frac{\Updelta {K}}{{K}}} \right)^{2}, $$
(A9)

and, after substituting for multiplicative terms,

$$ \left({\frac{\Updelta \hbox{AT}}{\hbox{AT}}} \right)^{2}=\Upphi ^{2}\left({\frac{\Updelta {Q}}{{Q}}} \right)^{2}+\,\Upphi ^{2}\left({\frac{\Updelta {K}}{{K}}} \right)^{2}. $$
(A10)

The share of Q and K errors depends on the Φ multiplicative term. The Q errors are insignificant when Q approaches zero. Their role increases if Φ2 > 1, i.e., if Q > K eq/2. An extreme multiplication effect of the Φ2 term is close to equilibrium, as indicated by \(\lim \limits_{Q\rightarrow K} \, \Upphi =\infty. \) If \(Q \gg K_{\rm eq},\) the multiplicative effect diminishes, as K eq may be omitted in comparison with Q.

2.3 Normalized Flux Error

The error propagation was derived from the expression

$$ {j}_{\rm norm} ={j}/\{{A}\}. $$
(A11)

Evaluating Eq. A11 according to A1 with respect to j and {A} variables yields

$$ {j}_{\rm norm}^2 =\frac{1}{\{{A}\}^{2}}\Updelta {j}^{2}+\frac{{j}}{\{{A}\}^{2}}\Updelta \{{A}\}^{2}. $$
(A12)

After dividing by the squared Eq. A11 and rewriting, we obtain

$$ \left({\frac{\Updelta {j}_{\rm norm} }{{j}_{\rm norm} }} \right)^{2}=\left({\frac{\Updelta {j}}{{j}}} \right)^{2}+\left({\frac{\Updelta \{{A}\}}{\{{A}\}}} \right)^{2}. $$
(A13)

2.4 DIFFEREL Modeling Error

An uncertainty in the DIFFEREL modeling was derived from Eq. 12. Assuming the term \(a_{\rm gel} a_{\rm w}^{2} \cong 1\) and rewriting, it yields

$$ {k}_{\rm d} =\frac{{j}_{\rm norm}{K}}{\left({{K}-{Q}} \right)}. $$
(A14)

The rearrangement of Eq. A14 according to Eq. A1 with respect to j norm and Q variables gives

$$ \Updelta {k}_{\rm d}^2 =\frac{{K}^{2}}{\left({ {K}-{Q} } \right)^{2}}\Updelta {j}_{\rm norm}^2 + \frac{{j}_{\rm norm}^2 {K}^{2}}{\left({ {K}-{Q} } \right)^{4}}\Updelta {Q}^{2}. $$
(A15)

After dividing by the squared Eq. A14 and rewriting, the equation becomes

$$ \left({\frac{\Updelta {k}_{\rm d} }{{k}_{\rm d} }} \right)^{2}=\left({\frac{\Updelta {j}_{\rm norm} }{{j}_{\rm norm}}} \right)^{2}+ \left({ \frac{{Q}}{{K}-{Q}} } \right)^{2}\left({\frac{\Updelta {Q}}{{Q}}} \right)^{2}, $$
(A16)

or, after substituting for the multiplicative term,

$$ \left({\frac{\Updelta {k}_{\rm d} }{{k}_{\rm d} }} \right)^{2}=\left({\frac{\Updelta {j}_{\rm norm}}{{j}_{\rm norm}}} \right)^{2}+\,\Upphi ^{2}\left({\frac{\Updelta {Q}}{{Q}}} \right)^{2}. $$
(A17)

Because k g is linked to k d by the simple relation of k g = k d/K eq, the uncertainty in k g is the same as in the k d.

As it can be seen, the share of Q errors depends on the Φ2 multiplicative term. The Q errors themselves are insignificant if Q approaches zero. Their role increases if Φ2 > 1, i.e., if Q > K eq/2. An extreme multiplication effect of the Φ2 term is close to equilibrium, as indicated by \(\lim\limits_{Q\rightarrow K} \, \Upphi =\infty.\) When \(Q\gg K_{\rm eq},\) the multiplicative effect diminishes, as K eq may be omitted in comparison with Q.

2.5 INTEGEXPEL Modeling Error

Error linked to the INTEGEXPEL modeling was derived from Eq. 16. It was rewritten as

$$ {k}_{\rm g} = \frac{{V}}{\{A\}\gamma_{\hbox{Si}}t}\hbox{ln} \left(\frac{K-Q_0}{K-Q}\right). $$
(A18)

An rearrangement according to Eq. A1 with respect to the {A} and Q variables yields

$$ \Updelta {k}_{\rm g}^2 =\frac{{V}^{2}}{\{{A}\}^{4}\gamma_{\rm Si}^2 {t}^{2}}\left[ {\hbox{ln} \left({\frac{{K}-{Q}^{0}}{{K}-{Q}}} \right)} \right]^{2}\Updelta \left\{ {A} \right\}^{2}+\frac{{V}^{2}}{\{{A}\}^{2}\gamma_{\rm Si}^2 {t}^{2}({K}-{Q})^{2}}\Updelta {Q}^{2}. $$
(A19)

After dividing by the squared Eq. A18, it simplifies to

$$ \left({\frac{\Updelta {k}_{\rm g} }{{k}_{\rm g} }} \right)^{2}=\left({\frac{\Updelta \left\{ {A} \right\}}{\{{A}\}}} \right)^{2}+\left({\frac{{Q}}{{K}-{Q}}} \right)^{2}\left({\frac{1}{\hbox{ln} [({K}-{Q}^{0})/({K}-{Q})]}} \right)^{2}\left({\frac{\Updelta {Q}}{{Q}}} \right)^{2}, $$
(A20)

and, after substituting the multiplicative terms, to

$$ \left({\frac{\Updelta {k}_{\rm g} }{{k}_{\rm g} }} \right)^{2}=\left({\frac{\Updelta \left\{ {A} \right\}}{\{{A}\}}} \right)^{2}+\,\Upphi^{2}\Upomega^{2}\left({\frac{\Updelta {Q}}{{Q}}} \right)^{2}. $$
(A21)

Close to equilibrium, the term is of fatal relevance as \(\lim\limits_{Q\rightarrow {K}} \Upphi^{2}\Upomega^{2}=\infty \) shows. The term value is enormous also at the start of experiment as indicated by \(\lim\limits_{{Q}\rightarrow {Q}^{0}} \Upphi^{2}\Upomega^{2}=\infty.\) Because k g is linked to k d by the simple relation of k g  = k d/K eq, the uncertainty in k g is the same as in k d.

2.6 INTEGLOGEL Modeling Error

Error linked to the INTEGLOGEL modeling was derived from Eq. 16. It can be rewritten as

$$ {k}_{\rm g} =\frac{{V}}{\{{A}\}\gamma_{\rm Si} {t}}\hbox{ln} \left({\frac{{K}-{Q}^{0}}{{K}-{Q}}} \right). $$
(A22)

Assuming {A}, K eq, and Q as variables, we can write

$$ \begin{aligned} \Updelta {k}_{\rm g}^2 =\frac{{V}^{2}}{\{{A}\}^{4}\gamma_{\rm Si}^2 {t}^{2}}\left[ {\hbox{ln} \left({\frac{{K}-{Q}^{0}}{{K}-{Q}}} \right)} \right]^{2}\Updelta \left\{ {A} \right\}^{2}&+\frac{{V}^{2}({Q}^{0}-{Q})^{2}}{\{{A}\}^{2}\gamma_{\rm Si}^2 {t}^{2}({K}-{Q})^{2}({K}-{Q}^{0})^{2}}\Updelta {K}^{2} \\ &+\frac{{V}^{2}}{\{{A}\}^{2}\gamma_{\rm Si}^2 {t}^{2}({K}-{Q})^{2}}\Updelta {Q}^{2} \\ \end{aligned}. $$
(A23)

Dividing by the squared Eq. A22 and a rewriting yield

$$ \begin{aligned} \left({\frac{\Updelta {k}_{\rm g}}{{k}_{\rm g} }} \right)^{2}&=\left({\frac{\Updelta \{{A}\}}{\{{A}\}}} \right)^{2}+\left({\frac{{K}}{{K}-{Q}}} \right)^{2}\left({\frac{{Q}^{0}-{Q}}{{K}-{Q}^{0}}} \right)^{2}\left({\frac{1}{\ln[({K}-{Q}^{0})/({K}-{Q})]}} \right)^{2}\left({\frac{\Updelta {K}}{{K}}} \right)^{2} \\ &+\left({\frac{{Q}}{{K}-{Q}}} \right)^{2}\left({\frac{1}{\ln[({K}-{Q}^{0})/({K}-{Q})]}} \right)^{2}\left({\frac{\Updelta {Q}}{{Q}}} \right)^{2} \\ \end{aligned}, $$
(A24)

and, after substituting for the error multiplicative terms, it gives

$$ \left({\frac{\Updelta {k}_{\rm g} }{{k}_{\rm g} }} \right)^{2}=\left({\frac{\Updelta \{{A}\}}{\{{A}\}}} \right)^{2}+\,\Upgamma ^{2}\Uppsi^{2}\Upomega^{2}\left({\frac{\Updelta {K}}{{K}}} \right)^{2}+\,\Upphi^{2}\Upomega^{2}\left({\frac{\Updelta {Q}}{{Q}}} \right)^{2}. $$
(A25)

The analysis of a share of K eq and Q error shows that the both Γ2Ψ2Ω2 and Φ2Ω2 multiplicative terms effect is at maximum close to equilibrium, as indicated by \(\lim\limits_{Q\rightarrow K} \Upgamma \Uppsi \Upomega =\infty \) and \(\lim \limits_{Q\rightarrow K} \Upphi \Upomega =\infty.\)

2.7 The AFFINEL Modeling

Error propagation linked to the AFFINEL modeling was derived from Eqs. 12 and A14. In contrast to the DIFFEREL case, the equation was evaluated with respect to j norm, Q, and K. The rearrangement of Eq. A14 according to Eq. A1 gives

$$ \Updelta {k}_{\rm d}^2 =\frac{{K}^{2}}{({K}-{Q})^{2}}\Updelta {j}_{\rm norm}^2 +\frac{{j}_{\rm norm}^2 {Q}^{2}}{({K}-{Q})^{4}}\Updelta {K}^{2}+\frac{{j}_{\rm norm}^2 {K}^{2}}{({K}-{Q})^{4}}\Updelta {Q}^{2} $$
(A26)

Dividing by the squared Eq. A14 and a rewriting yield

$$ \left({\frac{\Updelta {k}_{\rm d} }{{k}_{\rm d} }} \right)^{2}=\left({\frac{\Updelta {j}_{\rm norm} }{{j}_{\rm norm} }} \right)^{2}+\left({\frac{{Q}}{{K}-{Q}}} \right)^{2}\left({\frac{\Updelta {K}}{{K}}} \right)^{2}+\left({\frac{{Q}}{{K}-{Q}}} \right)^{2}\left({\frac{\Updelta {Q}}{{Q}}} \right)^{2}, $$
(A27)

and, after substituting for the multiplicative terms, it gives

$$ \left({\frac{\Updelta {k}_{\rm d} }{{k}_{\rm d} }} \right)^{2}=\left({\frac{\Updelta {j}_{\rm norm} }{{j}_{\rm norm} }} \right)^{2}+\Upphi^{2}\left({\frac{\Updelta {K}}{{K}}} \right)^{2}+\Upphi^{2}\left({\frac{\Updelta {Q}}{{Q}}} \right)^{2}. $$
(A28)

The analysis of K eq and Q error shares shows that the maximum effect of the Φ multiplicative term is close to equilibrium, as indicated by \(\lim \limits_{Q\rightarrow K} \Upphi =\infty.\)

2.8 The Equilibrium Constant Based on Detailed Balancing Principle

The uncertainty in the \(K_{\rm eq}^{\rm DBP}\) was calculated from the equation \({K}_{\rm eq}^{\rm \rm DBP}\, =\, {k}_{\rm d}/{k}_{\rm g}.\) Because k d and k g values are correlated, we must use a modified form of the function A1,

$$ \Updelta {F}^{2}=\left[ {\left({\frac{\partial {F}}{\partial {x}_1 }} \right) \Updelta {x}_1 } \right]^{2}+2 C\, \left({\frac{\partial {F}}{\partial {x}_1 }} \right) \left({\frac{\partial {F}}{\partial {x}_2 }} \right)\, \Updelta {x}_1 \Updelta {x}_2 +\, \left[ {\left({\frac{\partial {F}}{\partial {x}_2 }} \right) \Updelta {x}_2 } \right]^{2}, $$
(A29)

where C is correlation coefficient (Papoulis 1991).

Developing the equation \({K}_{\rm eq}^{\rm DBP}\, =\, {k}_{\rm d}/{k}_{\rm g} \) according to Eq. A29 with respect to k d and k g gives

$$ \left({\Updelta {K}_{\rm eq}^{\rm KDP}} \right)^{2}=\left({\frac{1}{{k}_{\rm g}}} \right)^{2}\left({ \Updelta {k}_{\rm d}} \right)^{2}+2 C\, \left({\frac{1}{{k}_{\rm g}}} \right) \left({-\frac{{k}_{\rm d}}{{k}_{\rm g}^2 }} \right) \Updelta {k}_{\rm d} \Updelta {k}_{\rm g} +\left({-\frac{{k}_{\rm d}}{{k}_{\rm g}^2 }} \right)^{2}\left({ \Updelta {k}_{\rm g}} \right)^{2}. $$
(A30)

After dividing by \( \left({{K}_{\rm eq}^{\rm DBP}} \right)^{2}\, =\, ({k}_{\rm d})^{2}/({k}_{\rm g})^{2}\) and rewriting, Eq. A30 yields

$$ \left({\frac{\Updelta {K}_{\rm eq}^{\rm KDP} }{{K}_{\rm eq}^{\rm KDP} }} \right)^{2}=\left({\frac{\Updelta {k}_{\rm d}}{{k}_{\rm d} }} \right)^{2}\, -\, 2 C\, \left({\frac{\Updelta {k}_{\rm d} }{{k}_{\rm d} }} \right) \left({\frac{\Updelta {k}_{\rm g} }{{k}_{\rm g} }} \right) \, +\, \left({\frac{\Updelta {k}_{\rm g} }{{k}_{\rm g} }} \right)^{2}. $$
(A31)

When C ∼ 1, the Eq. A31 simplifies to

$$ \left({\frac{\Updelta {K}_{\rm eq}^{\rm KDP} }{{K}_{\rm eq}^{\rm KDP} }} \right)^{2}=\left[ {\left({\frac{\Updelta {k}_{\rm d} }{{k}_{\rm d} }} \right)-\, \left({\frac{\Updelta {k}_{\rm g} }{{k}_{\rm g} }} \right)} \right]^{2}. $$
(A32)

In the case that \(\Updelta {k}_{\rm d}/{k}_{\rm d} \approx \Updelta {k}_{\rm g}/{k}_{\rm g},\) the uncertainty stemming from error propagation approaches zero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faimon, J., Blecha, M. Interaction of Freshly Precipitated Silica Gel with Aqueous Silicic Acid Solutions under Ambient and Near Neutral pH-conditions: A Detailed Analysis of Linear Rate Law. Aquat Geochem 14, 1–40 (2008). https://doi.org/10.1007/s10498-007-9024-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-007-9024-x

Keywords

Navigation