Skip to main content
Log in

The natural product dehydrocurvularin induces apoptosis of gastric cancer cells by activating PARP-1 and caspase-3

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The natural product dehydrocurvularin (DSE2) is a fungal-derived macrolide with potent anticancer activity, but the mechanism is still unclear. We found that DSE2 effectively inhibited the growth of gastric cancer cells and induced the apoptosis by activating Poly(ADP-ribose) polymerase 1 (PARP-1) and caspase-3. Pharmacological inhibition and genetic knockdown with PARP-1 or caspase-3 suppressed DSE2-induced apoptosis. PARP-1 was previously reported to be cleaved into fragments during apoptosis. However, PARP-1 was barely cleaved in DSE2-induced apoptosis. DSE2 induced PARP-1 activation as indicated by rapid depletion of NAD+ and the concomitant formation of poly(ADP-ribosylated) proteins (PARs). Interestingly, the PARP-1 inhibitor (Olaparib) attenuated the cytotoxicity of DSE2. Moreover, the combination of Olaparib and Z-DEVD-FMK (caspase-3 inhibitor) further reduced the cytotoxicity. It has been shown that PARP-1 activation triggers cytoplasm-nucleus translocation of apoptosis-inducing factor (AIF). Caspase-3 inhibitors inhibited PARP-1 activation and suppressed PARP-1-induced AIF nuclear translocation. These results indicated that DSE2-induced caspase-3 activation may occur before PARP-1 activation. The ROS inhibitor, N-acetyl-cysteine, significantly inhibited the activation of caspase-3 and PARP-1, indicating that ROS overproduction contributed to DSE2-induced apoptosis. Using an in vivo approach, we further found that DSE2 significantly inhibited gastric tumor growth and promoted translocation of AIF to the nucleus. In conclusion, DSE2 induces gastric cell apoptosis by activating caspase-3 and PARP-1, and shows potent antitumor activity against human gastric carcinoma in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Spiegel JO, Van Houten B, Durrant JD (2021) PARP1: structural insights and pharmacological targets for inhibition. DNA Repair 103:103125. https://doi.org/10.1016/j.dnarep.2021.103125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kumar V, Kumar A, Mir KUI, Yadav V, Chauhan SS (2022) Pleiotropic role of PARP1: an overview. 3 Biotech 12(1):3. https://doi.org/10.1007/s13205-021-03038-6

    Article  PubMed  Google Scholar 

  3. Mashimo M, Onishi M, Uno A et al (2021) The 89-kDa PARP1 cleavage fragment serves as a cytoplasmic PAR carrier to induce AIF-mediated apoptosis. J Biol Chem 296:100046. https://doi.org/10.1074/jbc.RA120.014479

    Article  CAS  PubMed  Google Scholar 

  4. Zhou Y, Liu L, Tao S et al (2021) Parthanatos and its associated components: promising therapeutic targets for cancer. Pharmacol Res 163:105299. https://doi.org/10.1016/j.phrs.2020.105299

    Article  CAS  PubMed  Google Scholar 

  5. Liu L, Li J, Ke Y et al (2022) The key players of parthanatos: opportunities for targeting multiple levels in the therapy of parthanatos-based pathogenesis. Cell Mol Life Sci 79(1):60. https://doi.org/10.1007/s00018-021-04109-w

    Article  CAS  PubMed  Google Scholar 

  6. Zhan J, Wijeratne EM, Seliga CJ et al (2004) A new anthraquinone and cytotoxic curvularins of a Penicillium sp. from the rhizosphere of Fallugia paradoxa of the Sonoran desert. J Antibiot 57(5):341–344. https://doi.org/10.7164/antibiotics.57.341

    Article  CAS  Google Scholar 

  7. Zhou F, Zhou Y, Guo Z, Yu X, Deng Z (2022) Review of 10,11-Dehydrocurvularin: synthesis, structural diversity, Bioactivities and Mechanisms. Mini Rev Med Chem 22(6):836–847. https://doi.org/10.2174/1389557521666210428132256

    Article  CAS  PubMed  Google Scholar 

  8. He J, Wijeratne EM, Bashyal BP et al (2004) Cytotoxic and other metabolites of aspergillus inhabiting the rhizosphere of Sonoran desert plants. J Nat Prod 67(12):1985–1991. https://doi.org/10.1021/np040139d

    Article  CAS  PubMed  Google Scholar 

  9. Rudolph K, Serwe A, Erkel G (2013) Inhibition of TGF-β signaling by the fungal lactones (S)-curvularin, dehydrocurvularin, oxacyclododecindione and galiellalactone. Cytokine 61(1):285–296. https://doi.org/10.1016/j.cyto.2012.10.011

    Article  CAS  PubMed  Google Scholar 

  10. Aly AH, Debbab A, Clements C et al (2011) NF kappa B inhibitors and antitrypanosomal metabolites from endophytic fungus penicillium sp. isolated from Limonium tubiflorum. Bioorg Med Chem 19(1):414–421. https://doi.org/10.1016/j.bmc.2010.11.012

    Article  CAS  PubMed  Google Scholar 

  11. Tillotson J, Bashyal BP, Kang M et al (2016) Selective inhibition of p97 by chlorinated analogues of dehydrocurvularin. Org Biomol Chem 14(25):5918–5921. https://doi.org/10.1039/c6ob00560h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhao Q, Bi Y, Zhong J et al (2021) 10,11-dehydrocurvularin exerts antitumor effect against human breast cancer by suppressing STAT3 activation. Acta Pharmacol Sin 42(5):791–800. https://doi.org/10.1038/s41401-020-0499-y

    Article  CAS  PubMed  Google Scholar 

  13. Robles-Escajeda E, Lerma D, Nyakeriga AM et al (2013) Searching in mother nature for anti-cancer activity: anti-proliferative and pro-apoptotic effect elicited by green barley on leukemia/lymphoma cells. PLoS ONE 8(9):e73508. https://doi.org/10.1371/journal.pone.0073508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Banfalvi G (2017) Methods to detect apoptotic cell death. Apoptosis: an international journal on programmed cell death 22(2):306–323. https://doi.org/10.1007/s10495-016-1333-3

    Article  CAS  PubMed  Google Scholar 

  15. Smyth PG, Berman SA (2002) Markers of apoptosis: methods for elucidating the mechanism of apoptotic cell death from the nervous system. Biotechniques 32(3):648–650 652, 654 passim. https://doi.org/10.2144/02323dd02

    Article  CAS  PubMed  Google Scholar 

  16. Boulares AH, Yakovlev AG, Ivanova V et al (1999) Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J Biol Chem 274(33):22932–22940. https://doi.org/10.1074/jbc.274.33.22932

    Article  CAS  PubMed  Google Scholar 

  17. Germain M, Affar EB, D’Amours D, Dixit VM, Salvesen GS, Poirier GG (1999) Cleavage of automodified poly(ADP-ribose) polymerase during apoptosis. Evidence for involvement of caspase-7. J Biol Chem 274(40):28379–28384. https://doi.org/10.1074/jbc.274.40.28379

    Article  CAS  PubMed  Google Scholar 

  18. Sukhanova MV, Abrakhi S, Joshi V et al (2016) Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)ation using high-resolution AFM imaging. Nucleic Acids Res 44(6):e60. https://doi.org/10.1093/nar/gkv1476

    Article  PubMed  Google Scholar 

  19. Alemasova EE, Lavrik OI (2019) Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins. Nucleic Acids Res 47(8):3811–3827. https://doi.org/10.1093/nar/gkz120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang XH, Sladek TL, Liu X, Butler BR, Froelich CJ, Thor AD (2001) Reconstitution of caspase 3 sensitizes MCF-7 breast cancer cells to doxorubicin- and etoposide-induced apoptosis. Cancer Res 61(1):348–354

    CAS  PubMed  Google Scholar 

  21. Jänicke RU (2009) MCF-7 breast carcinoma cells do not express caspase-3. Breast Cancer Res Treat 117(1):219–221. https://doi.org/10.1007/s10549-008-0217-9

    Article  PubMed  Google Scholar 

  22. Bano D, Prehn JHM (2018) Apoptosis-inducing factor (AIF) in physiology and disease: the Tale of a Repented Natural Born Killer. EBioMedicine 30:29–37. https://doi.org/10.1016/j.ebiom.2018.03.016

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cregan SP, Dawson VL, Slack RS (2004) Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene 23(16):2785–2796. https://doi.org/10.1038/sj.onc.1207517

    Article  CAS  PubMed  Google Scholar 

  24. Wang HF, Wang ZQ, Ding Y et al (2018) Endoplasmic reticulum stress regulates oxygen-glucose deprivation-induced parthanatos in human SH-SY5Y cells via improvement of intracellular ROS. CNS Neurosci Ther 24(1):29–38. https://doi.org/10.1111/cns.12771

    Article  CAS  PubMed  Google Scholar 

  25. Piao M, Wang Y, Liu N et al (2020) Sevoflurane exposure induces neuronal cell Parthanatos initiated by DNA damage in the developing brain via an increase of intracellular reactive oxygen species. Front Cell Neurosci 14:583782. https://doi.org/10.3389/fncel.2020.583782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Soldani C, Lazzè MC, Bottone MG et al (2001) Poly(ADP-ribose) polymerase cleavage during apoptosis: when and where? Exp Cell Res 269(2):193–201. https://doi.org/10.1006/excr.2001.5293

    Article  CAS  PubMed  Google Scholar 

  27. Soldani C, Scovassi AI (2002) Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis 7(4):321–328. https://doi.org/10.1023/a:1016119328968

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, An R, Umanah GK et al (2016) A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1. Science 354(6308). https://doi.org/10.1126/science.aad6872

  29. Wang C, Xu W, Zhang Y, Zhang F, Huang K (2018) PARP1 promote autophagy in cardiomyocytes via modulating FoxO3a transcription. Cell Death Dis 9(11):1047. https://doi.org/10.1038/s41419-018-1108-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pei Q, Wang R, Shu C, Pei X, Li X, Gou G (2019) The cell death phenotype of MGC-803 cells inducing with “Dextran-Magnetic layered double Hydroxide-Fluorouracil” Drug Delivery System and Fluorouracil. Biol Pharm Bull 42(8):1282–1294. https://doi.org/10.1248/bpb.b18-00938

    Article  CAS  PubMed  Google Scholar 

  31. Yu J, Ji H, Dong X, Feng Y, Liu A (2019) Apoptosis of human gastric carcinoma MGC-803 cells induced by a novel Astragalus membranaceus polysaccharide via intrinsic mitochondrial pathways. Int J Biol Macromol 126:811–819. https://doi.org/10.1016/j.ijbiomac.2018.12.268

    Article  CAS  PubMed  Google Scholar 

  32. Jones RA, Johnson VL, Hinton RH, Poirier GG, Chow SC, Kass GE (1999) Liver poly(ADP-ribose)polymerase is resistant to cleavage by caspases. Biochem Biophys Res Commun 256(2):436–441. https://doi.org/10.1006/bbrc.1999.0313

    Article  CAS  PubMed  Google Scholar 

  33. Zhang F, Lau SS, Monks TJ (2012) A dual role for poly(ADP-ribose) polymerase-1 during caspase-dependent apoptosis. Toxicol Sci 128(1):103–114. https://doi.org/10.1093/toxsci/kfs142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Luo Q, Wu X (2021) OTUD1 activates caspase-independent and caspase-dependent apoptosis by promoting AIF Nuclear translocation and MCL1 degradation. 8:2002874. https://doi.org/10.1002/advs.202002874. 8

  35. Candé C, Cohen I, Daugas E et al (2002) Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie 84(2–3):215–222. https://doi.org/10.1016/s0300-9084(02)01374-3

    Article  PubMed  Google Scholar 

  36. Kist M, Vucic D (2021) Cell death pathways: intricate connections and disease implications. 40:e106700. https://doi.org/10.15252/embj.2020106700. 5

  37. Zheng L, Wang C, Luo T et al (2017) JNK activation contributes to oxidative Stress-Induced Parthanatos in Glioma cells via increase of intracellular ROS production. Mol Neurobiol 54(5):3492–3505. https://doi.org/10.1007/s12035-016-9926-y

    Article  CAS  PubMed  Google Scholar 

  38. Wang R, Li C, Qiao P et al (2018) OGG1-initiated base excision repair exacerbates oxidative stress-induced parthanatos. Cell Death Dis 9(6):628. https://doi.org/10.1038/s41419-018-0680-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fatokun AA, Dawson VL, Dawson TM (2014) Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol 171(8):2000–2016. https://doi.org/10.1111/bph.12416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Key Research and Development Program of China (Grant numbers [2017YFD0201400]) and Changjiang Scholars and Innovative Research Team in University (Grant numbers [IRT_15R16]).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by XH, SX and CC. Data curation and validation were performed by LX. Visualization and formal analysis were performed by YX. CC and LD conceived and supervised the study. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Chuan Chen or Duqiang Luo.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Animal Ethics and Welfare Committee of Hebei University (2020/IACUC-2020XS031).

Consent to participate

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Shen, X., Li, X. et al. The natural product dehydrocurvularin induces apoptosis of gastric cancer cells by activating PARP-1 and caspase-3. Apoptosis 28, 525–538 (2023). https://doi.org/10.1007/s10495-023-01811-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-023-01811-x

Keywords

Navigation