Skip to main content

Advertisement

Log in

Piperlongumine, a piper alkaloid, enhances the efficacy of doxorubicin in breast cancer: involvement of glucose import, ROS, NF-κB and lncRNAs

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Piperlongumine (PL, piplartine) is an alkaloid derived from the Piper longum L. (long pepper) roots. Originally discovered in 1961, the biological activities of this molecule against some cancer types was reported during the last decade. Whether PL can synergize with doxorubicin and the underlying mechanism in breast cancer remains elusive. Herein, we report the activities of PL in numerous breast cancer cell lines. PL reduced the migration and colony formation by cancer cells. An enhancement in the sub-G1 population, reduction in the mitochondrial membrane potential, chromatin condensation, DNA laddering and suppression in the cell survival proteins was observed by the alkaloid. Further, PL induced ROS generation in breast cancer cells. While TNF-α induced p65 nuclear translocation, PL suppressed the translocation in cancer cells. The expression of lncRNAs such as MEG3, GAS5 and H19 were also modulated by the alkaloid. The molecular docking studies revealed that PL can interact with both p65 and p50 subunits. PL reduced the glucose import and altered the pH of the medium towards the alkaline side. PL also suppressed the expression of glucose and lactate transporter in breast cancer cells. In tumor bearing mouse model, PL was found to synergize with doxorubicin and reduced the size, volume and weight of the tumor. Overall, the effects of doxorubicin in cancer cells are enhanced by PL. The modulation of glucose import, NF-κB activation and lncRNAs expression may have contributory role for the activities of PL in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  2. Zaid H, Antonescu CN, Randhawa VK, Klip A (2008) Insulin action on glucose transporters through molecular switches, tracks and tethers. Biochem J 413:201–215

    Article  CAS  PubMed  Google Scholar 

  3. Younes M, Brown R, Mody D, Fernandez L, Laucirica R (1995) GLUT1 expression in human breast carcinoma: correlation with known prognostic markers. Anticancer Res 15:2895–2898

    CAS  PubMed  Google Scholar 

  4. Bisetto S, Whitaker-Menezes D, Wilski NA et al (2018) Monocarboxylate transporter 4 (MCT4) knockout mice have attenuated 4NQO induced carcinogenesis; a role for MCT4 in Driving oral squamous cell cancer. Front Oncol 8:324

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vaughan RA, Garcia-Smith R, Dorsey J, Griffith JK, Bisoffi M, Trujillo KA (2013) Tumor necrosis factor alpha induces Warburg-like metabolism and is reversed by anti-inflammatory curcumin in breast epithelial cells. Int J Cancer 133:2504–2510

    Article  CAS  PubMed  Google Scholar 

  6. Sommermann TG, O’Neill K, Plas DR, Cahir-McFarland E (2011) IKKβ and NF-κB transcription govern lymphoma cell survival through AKT-induced plasma membrane trafficking of GLUT1. Can Res 71:7291–7300

    Article  CAS  Google Scholar 

  7. Mauro C, Leow SC, Anso E et al (2011) NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nat Cell Biol 13:1272–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu J, Zhang C, Wu R et al (2015) RRAD inhibits the Warburg effect through negative regulation of the NF-κB signaling. Oncotarget 6:14982

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang H, Jiang H, Corbet C et al (2019) Piperlongumine increases sensitivity of colorectal cancer cells to radiation: involvement of ROS production via dual inhibition of glutathione and thioredoxin systems. Cancer Lett 450:42–52

    Article  CAS  PubMed  Google Scholar 

  10. Gupta SC, Sundaram C, Reuter S, Aggarwal BB (2010) Inhibiting NF-κB activation by small molecules as a therapeutic strategy. Biochim et Biophys Acta (BBA) 1799:775–787

    Article  CAS  Google Scholar 

  11. Gupta SC, Awasthee N, Rai V, Chava S, Gunda V, Challagundla KB (2019) Long non-coding RNAs and nuclear factor-B crosstalk in cancer and other human diseases. Biochim et Biophys Acta (BBA) 1873:188316

    Google Scholar 

  12. Liu Y, He X, Chen Y, Cao D (2020) Long non-coding RNA LINC00504 regulates the Warburg effect in ovarian cancer through inhibition of miR-1244. Mol Cell Biochem 464:39–50

    Article  CAS  PubMed  Google Scholar 

  13. Malakar P, Stein I, Saragovi A et al (2019) Long noncoding RNA MALAT1 regulates cancer glucose metabolism by enhancing mTOR-mediated translation of TCF7L2. Can Res 79:2480–2493

    Article  CAS  Google Scholar 

  14. Xiang S, Gu H, Jin L, Thorne RF, Zhang XD, Wu M (2018) LncRNA IDH1-AS1 links the functions of c-Myc and HIF1α via IDH1 to regulate the Warburg effect. Proc Natl Acad Sci 115:E1465–E1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu X, Gan B (2016) lncRNA NBR2 modulates cancer cell sensitivity to phenformin through GLUT1. Cell Cycle 15:3471–3481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bezerra DP, Pessoa C, de Moraes MO, Saker-Neto N, Silveira ER, Costa-Lotufo LV (2013) Overview of the therapeutic potential of piplartine (piperlongumine). Eur J Pharm Sci 48:453–463

    Article  CAS  PubMed  Google Scholar 

  17. Costa-Lotufo LV, Montenegro RC, Alves APN et al (2010) The contribution of natural products as source of new anticancer drugs: Studies carried out at the national experimental oncology laboratory from the Federal University of Ceará. Revista Virtual de Química 2:47–58

    Article  CAS  Google Scholar 

  18. Chen SY, Huang HY, Lin HP, Fang CY (2019) Piperlongumine induces autophagy in biliary cancer cells via reactive oxygen species-activated Erk signaling pathway. Int J Mol Med 44:1687–1696

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang P, Shi L, Zhang T et al (2019) Piperlongumine potentiates the antitumor efficacy of oxaliplatin through ROS induction in gastric cancer cells. Cell Oncol 42:847–860

    Article  CAS  Google Scholar 

  20. Randhawa H, Kibble K, Zeng H, Moyer M, Reindl K (2013) Activation of ERK signaling and induction of colon cancer cell death by piperlongumine. Toxicol In Vitro 27:1626–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yao Y, Sun Y, Shi M et al (2016) Piperlongumine induces apoptosis and reduces bortezomib resistance by inhibiting STAT3 in multiple myeloma cells. Oncotarget 7:73497

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li Q, Chen L, Dong Z et al (2019) Piperlongumine analogue L50377 induces pyroptosis via ROS mediated NF-κB suppression in non-small-cell lung cancer. Chem-Biol interact 313:108820

    Article  CAS  PubMed  Google Scholar 

  23. Dhillon H, Chikara S, Reindl KM (2014) Piperlongumine induces pancreatic cancer cell death by enhancing reactive oxygen species and DNA damage. Toxicol Rep 1:309–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen S-Y, Liu G-H, Chao W-Y et al (2016) Piperlongumine suppresses proliferation of human oral squamous cell carcinoma through cell cycle arrest, apoptosis and senescence. Int J Mol Sci 17:616

    Article  PubMed Central  Google Scholar 

  25. Kong E-H, Kim Y-J, Kim Y-J et al (2008) Piplartine induces caspase-mediated apoptosis in PC-3 human prostate cancer cells. Oncol Rep 20:785–792

    CAS  PubMed  Google Scholar 

  26. Wang F, Mao Y, You Q, Hua D, Cai D (2015) Piperlongumine induces apoptosis and autophagy in human lung cancer cells through inhibition of PI3K/Akt/mTOR pathway. Int J Immunopathol Pharmacol 28:362–373

    Article  CAS  PubMed  Google Scholar 

  27. Han JG, Gupta SC, Prasad S, Aggarwal BB (2014) Piperlongumine chemosensitizes tumor cells through interaction with cysteine 179 of IκBα kinase, leading to suppression of NF-κB–regulated gene products. Mol Cancer Ther 13:2422–2435

    Article  CAS  PubMed  Google Scholar 

  28. Fofaria NM, Srivastava SK (2014) Critical role of STAT3 in melanoma metastasis through anoikis resistance. Oncotarget 5:7051

    Article  PubMed  PubMed Central  Google Scholar 

  29. Xiong X-x, Liu J-m, Qiu X-y, Pan F, Yu S-b, Chen X-q (2015) Piperlongumine induces apoptotic and autophagic death of the primary myeloid leukemia cells from patients via activation of ROS-p38/JNK pathways. Acta Pharmacol Sin 36:362–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thongsom S, Suginta W, Lee KJ, Choe H, Talabnin C (2017) Piperlongumine induces G2/M phase arrest and apoptosis in cholangiocarcinoma cells through the ROS-JNK-ERK signaling pathway. Apoptosis 22:1473–1484

    Article  CAS  PubMed  Google Scholar 

  31. Chen Y, Liu JM, Xiong XX et al (2015) Piperlongumine selectively kills hepatocellular carcinoma cells and preferentially inhibits their invasion via ROS-ER-MAPKs-CHOP. Oncotarget 6:6406

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yao J-X, Yao Z-F, Li Z-F, Liu Y-B (2014) Radio-sensitization by Piper longumine of human breast adenoma MDA-MB-231 cells in vitro. Asian Pac J Cancer Prev 15:3211–3217

    Article  PubMed  Google Scholar 

  33. Verma SS, Rai V, Awasthee N et al (2019) Isodeoxyelephantopin, a sesquiterpene lactone induces ROS generation, suppresses NF-κB activation, modulates LncRNA expression and exhibit activities against breast cancer. Sci Rep 9:1–16

    Article  Google Scholar 

  34. Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70:440–446

    Article  CAS  PubMed  Google Scholar 

  35. Gupta SC, Prasad S, Sethumadhavan DR, Nair MS, Mo Y-Y, Aggarwal BB (2013) Nimbolide, a limonoid triterpene, inhibits growth of human colorectal cancer xenografts by suppressing the proinflammatory microenvironment. Clin Cancer Res 19:4465–4476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Awasthee N, Rai V, Verma SS, Francis KS, Nair MS, Gupta SC (2018) Anti-cancer activities of Bharangin against breast cancer: Evidence for the role of NF-κB and lncRNAs. Biochim et Biophys Acta (BBA) 1862:2738–2749

    Article  CAS  Google Scholar 

  37. Zhao Y-R, Li H-M, Zhu M et al (2018) Non-benzoquinone geldanamycin analog, WK-88-1, induces apoptosis in human breast cancer cell lines. J Microbiol Biotechnol 28:542–550

    Article  CAS  PubMed  Google Scholar 

  38. Saeed U, Durgadoss L, Valli RK, Joshi DC, Joshi PG, Ravindranath V (2008) Knockdown of cytosolic glutaredoxin 1 leads to loss of mitochondrial membrane potential: implication in neurodegenerative diseases. PLoS ONE 3:e2459

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gupta SC, Singh R, Asters M et al (2016) Regulation of breast tumorigenesis through acid sensors. Oncogene 35:4102–4111

    Article  CAS  PubMed  Google Scholar 

  40. Gupta SC, Singh R, Pochampally R, Watabe K, Mo Y-Y (2014) Acidosis promotes invasiveness of breast cancer cells through ROS-AKT-NF-κB pathway. Oncotarget 5:12070

    Article  PubMed  PubMed Central  Google Scholar 

  41. Thang ND, Yajima I, Kumasaka MY et al (2011) Barium promotes anchorage-independent growth and invasion of human HaCaT keratinocytes via activation of c-SRC kinase. PLoS ONE 6:e25636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mishra S, Verma SS, Rai V et al (2019) Curcuma raktakanda induces apoptosis and suppresses migration in cancer cells: role of reactive oxygen species. Biomolecules 9:159

    Article  CAS  PubMed Central  Google Scholar 

  43. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C T method. Nat Protoc 3:1101

    Article  CAS  PubMed  Google Scholar 

  44. Cheng F, Li W, Zhou Y et al (2012) admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. ACS Publications, Washington DC

    Google Scholar 

  45. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    Article  CAS  PubMed  Google Scholar 

  46. Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pierce BG, Hourai Y, Weng Z (2011) Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLoS ONE 6:e24657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ozaslan M, Karagoz ID, Kilic IH, Guldur ME (2011) Ehrlich ascites carcinoma. Afr J Biotech 10:2375–2378

    Google Scholar 

  49. Tomayko MM, Reynolds CP (1989) Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol 24:148–154

    Article  CAS  PubMed  Google Scholar 

  50. Ranjan A, Choubey M, Yada T, Krishna A (2019) Direct effects of neuropeptide nesfatin-1 on testicular spermatogenesis and steroidogenesis of the adult mice. Gen Comp Endocrinol 271:49–60

    Article  CAS  PubMed  Google Scholar 

  51. Long J, Zhang C-J, Zhu N et al (2018) Lipid metabolism and carcinogenesis, cancer development. Am J Cancer Res 8:778

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lofterød T, Mortensen ES, Nalwoga H et al (2018) Impact of pre-diagnostic triglycerides and HDL-cholesterol on breast cancer recurrence and survival by breast cancer subtypes. BMC Cancer 18:1–11

    Article  Google Scholar 

  53. Bezerra DP, Militão GCG, De Castro FO et al (2007) Piplartine induces inhibition of leukemia cell proliferation triggering both apoptosis and necrosis pathways. Toxicol In Vitro 21:1–8

    Article  CAS  PubMed  Google Scholar 

  54. Bezerra DP, Castro FOd, Alves APN et al (2008) In vitro and in vivo antitumor effect of 5-FU combined with piplartine and piperine. J Appl Toxicol 28:156–163

    Article  CAS  PubMed  Google Scholar 

  55. Done S (2011) Breast cancer: recent advances in biology, imaging and therapeutics. BoD-Books on Demand, Hamburg

    Book  Google Scholar 

  56. Shirazi FH, Zarghi A, Kobarfard F et al (2011) Remarks in successful cellular investigations for fighting breast cancer using novel synthetic compounds. In: Gunduz M, Gunduz E (eds) Breast cancer: focusing tumor microenvironment, stem cells and metastasis. BoD-Books on Demand, Hamburg, pp 85–102

    Google Scholar 

  57. Anders C, Carey LA (2008) Understanding and treating triple-negative breast cancer. Oncology (Williston Park) 22:1233

    Google Scholar 

  58. Bezerra DP, Pessoa C, Moraes MO et al (2012) Sensitive method for determination of piplartine, an alkaloid amide from piper species, in rat plasma samples by liquid chromatography-tandem mass spectrometry. Quim Nova 35:460–465

    Article  CAS  Google Scholar 

  59. Patel K, Chowdhury N, Doddapaneni R, Boakye CHA, Godugu C, Singh M (2015) Piperlongumine for enhancing oral bioavailability and cytotoxicity of docetaxel in triple-negative breast cancer. J Pharm Sci 104:4417–4426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tanaka A, Youle RJ (2008) A chemical inhibitor of DRP1 uncouples mitochondrial fission and apoptosis. Mol Cell 29:409–410

    Article  CAS  PubMed  Google Scholar 

  61. Han S-S, Son D-J, Yun H, Kamberos NL, Janz S (2013) Piperlongumine inhibits proliferation and survival of Burkitt lymphoma in vitro. Leuk Res 37:146–154

    Article  CAS  PubMed  Google Scholar 

  62. Rothwarf DM, Karin M (1999) The NF-κB activation pathway: a paradigm in information transfer from membrane to nucleus. Sci STKE 1999:re1

    Article  CAS  PubMed  Google Scholar 

  63. Gupta SC, Prasad S, Reuter S et al (2010) Modification of cysteine 179 of IκBα kinase by nimbolide leads to down-regulation of NF-κB-regulated cell survival and proliferative proteins and sensitization of tumor cells to chemotherapeutic agents. J Biol Chem 285:35406–35417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pandey MK, Gupta SC, Nabavizadeh A, Aggarwal BB (2017) Regulation of cell signaling pathways by dietary agents for cancer prevention and treatment. Semin Cancer Biol 46:158–181

    Article  CAS  PubMed  Google Scholar 

  65. Mohammad J, Dhillon H, Chikara S et al (2018) Piperlongumine potentiates the effects of gemcitabine in in vitro and in vivo human pancreatic cancer models. Oncotarget 9:10457

    Article  PubMed  Google Scholar 

  66. Wondrak GT (2009) Redox-directed cancer therapeutics: molecular mechanisms and opportunities. Antioxid Redox Signal 11:3013–3069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen W, Lian W, Yuan Y, Li M (2019) The synergistic effects of oxaliplatin and piperlongumine on colorectal cancer are mediated by oxidative stress. Cell Death Dis 10:1–12

    Article  Google Scholar 

  68. Fofaria NM, Qhattal HSS, Liu X, Srivastava SK (2016) Nanoemulsion formulations for anti-cancer agent piplartine: characterization, toxicological, pharmacokinetics and efficacy studies. Int J Pharm 498:12–22

    Article  CAS  PubMed  Google Scholar 

  69. Nielsen D, Maare C, Skovsgaard T (1996) Cellular resistance to anthracyclines. Gen Pharmacol 27:251–255

    Article  CAS  PubMed  Google Scholar 

  70. Piska K, Koczurkiewicz P, Wnuk D et al (2019) Synergistic anticancer activity of doxorubicin and piperlongumine on DU-145 prostate cancer cells: the involvement of carbonyl reductase 1 inhibition. Chem-Biol Interact 300:40–48

    Article  CAS  PubMed  Google Scholar 

  71. Gupta SC, Kim JH, Kannappan R, Reuter S, Dougherty PM, Aggarwal BB (2011) Role of nuclear factor-κ B-mediated inflammatory pathways in cancer-related symptoms and their regulation by nutritional agents. Exp Biol Med 236:658–671

    Article  CAS  Google Scholar 

  72. Tsushima H, Mori M (2001) Involvement of protein kinase C and tyrosine kinase in lipopolysaccharide-induced anorexia. Pharmacol Biochem Behav 69:17–22

    Article  CAS  PubMed  Google Scholar 

  73. Brown RS, Wahl RL (1993) Overexpression of glut-1 glucose transporter in human breast cancer an immunohistochemical study. Cancer 72:2979–2985

    Article  CAS  PubMed  Google Scholar 

  74. Chan DA, Sutphin PD, Nguyen P et al (2011) Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci Transl Med 3:94ra70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kurniadewi F, Juliawaty LD, Syah YM et al (2010) Phenolic compounds from Cryptocarya konishii: their cytotoxic and tyrosine kinase inhibitory properties. J Nat Med 64:121–125

    Article  CAS  PubMed  Google Scholar 

  76. Vetterli L, Brun T, Giovannoni L, Bosco D, Maechler P (2011) Resveratrol potentiates glucose-stimulated insulin secretion in INS-1E β-cells and human islets through a SIRT1-dependent mechanism. J Biol Chem 286:6049–6060

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported in part from Indian Council of Medical Research, New Delhi (5/13/51/2020/NCD-III) and Science and Engineering Research Board, New Delhi (ECR/2016/000034). NA (5/3/8/40/ITR-F/2019-ITR), VR (3/2/2/43/2018/Online Onco Fship/NCD-III), and SM (3/1/3/JRF-2016/LS/HRD-65-80388) received fellowship from Indian Council of Medical Research, New Delhi. SSV was supported from DBT New Delhi (DBT/2017/BHU/786). AS was supported from UGC New Delhi [No.F.82-1/2018(SA-III)]. We thankfully acknowledge the support from Dr. Rahul K. Singh, Department of Zoology, BHU and Dr. P.K. Nayak, Department of Pharmaceutics Engineering and Technology, IIT BHU with Chemi-Doc system and animal house facility, respectively. The analyses with real-time PCR system and flow cytometer were performed at BHU’s Interdisciplinary School of Life Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subash C. Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 943 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awasthee, N., Shekher, A., Rai, V. et al. Piperlongumine, a piper alkaloid, enhances the efficacy of doxorubicin in breast cancer: involvement of glucose import, ROS, NF-κB and lncRNAs. Apoptosis 27, 261–282 (2022). https://doi.org/10.1007/s10495-022-01711-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-022-01711-6

Keywords

Navigation