Skip to main content

Advertisement

Log in

Triclosan induces apoptosis in Burkitt lymphoma-derived BJAB cells through caspase and JNK/MAPK pathways

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Burkitt's lymphoma (BL) is the fastest growing human tumor. Current treatment consists of a multiagent regimen of cytotoxic drugs with serious side effjects including tumor lysis, cardiotoxicity, hepatic impairment, neuropathy, myelosuppression, increased susceptibility to malignancy, and death. Furthermore, therapeutic interventions in areas of BL prevalence are not as feasible as in high-income countries. Therefore, there exists an urgent need to identify new therapies with a safer profile and improved accessibility. Triclosan (TCS), an antimicrobial used in personal care products and surgical scrubs, has gained considerable interest as an antitumor agent due to its interference with fatty acid synthesis. Here, we investigate the antitumor properties and associated molecular mechanisms of TCS in BL-derived BJAB cells. Dose-dependent cell death was observed following treatment with 10–100 µM TCS for 24 h, which was associated with membrane phospholipid scrambling, compromised permeability, and cell shrinkage. TCS-induced cell death was accompanied by elevated intracellular calcium, perturbed redox balance, chromatin condensation, and DNA fragmentation. TCS upregulated Bad expression and downregulated that of Bcl2. Moreover, caspase and JNK MAPK signaling were required for the full apoptotic activity of TCS. In conclusion, this report identifies TCS as an antitumor agent and provides new insights into the molecular mechanisms governing TCS-induced apoptosis in BL cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data in this study are available and included in this published article.

References

  1. Dozzo M, Carobolante F, Donisi PM et al (2017) Burkitt lymphoma in adolescents and young adults: management challenges. Adolesc Health Med Ther 8:11–29

    PubMed  Google Scholar 

  2. Molyneux EM, Rochford R, Griffin B et al (2012) Burkitt’s lymphoma. Lancet 379:1234–1244

    Article  PubMed  Google Scholar 

  3. Orem J, Mbidde EK, Lambert B, de Sanjose S, Weiderpass E (2007) Burkitt’s lymphoma in Africa, a review of the epidemiology and etiology. Afr Health Sci 7:166–175

    PubMed  PubMed Central  Google Scholar 

  4. Hesseling P, Broadhead R, Mansvelt E et al (2005) The 2000 Burkitt lymphoma trial in Malawi. Pediatr Blood Cancer 44:245–250

    Article  PubMed  Google Scholar 

  5. Casulo C, Friedberg J (2015) Treating Burkitt lymphoma in adults. Curr Hematol Malig Rep 10:266–271

    Article  PubMed  Google Scholar 

  6. Kurauchi K, Nishikawa T, Miyahara E, Okamoto Y, Kawano Y (2017) Role of metabolites of cyclophosphamide in cardiotoxicity. BMC Res Notes 10:406

    Article  PubMed  PubMed Central  Google Scholar 

  7. Luu AZ, Chowdhury B, Al-Omran M, Teoh H, Hess DA, Verma S (2018) Role of endothelium in doxorubicin-induced cardiomyopathy. JACC Basic Transl Sci 3:861–870

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ahlmann M, Hempel G (2016) The effect of cyclophosphamide on the immune system: implications for clinical cancer therapy. Cancer Chemother Pharmacol 78:661–671

    Article  CAS  PubMed  Google Scholar 

  9. Hesseling P, Molyneux E, Kamiza S, Israels T, Broadhead R (2009) Endemic Burkitt lymphoma: a 28-day treatment schedule with cyclophosphamide and intrathecal methotrexate. Ann Trop Paediatr 29:29–34

    Article  CAS  PubMed  Google Scholar 

  10. Schmitz R, Young RM, Ceribelli M et al (2012) Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 490:116–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jones RD, Jampani HB, Newman JL, Lee AS (2000) Triclosan: a review of effectiveness and safety in health care settings. Am J Infect Control 28:184–196

    Article  CAS  PubMed  Google Scholar 

  12. Alfhili MA, Lee MH (2019) Triclosan: an update on biochemical and molecular mechanisms. Oxidat Med Cell Longev 2019:1607304

    Article  Google Scholar 

  13. Guillen J, Bernabeu A, Shapiro S, Villalain J (2004) Location and orientation of Triclosan in phospholipid model membranes. Eur Biophys J 33:448–453

    Article  CAS  PubMed  Google Scholar 

  14. Alfhili MA, Weidner DA, Lee MH (2019) Disruption of erythrocyte membrane asymmetry by triclosan is preceded by calcium dysregulation and p38 MAPK and RIP1 stimulation. Chemosphere 229:103–111

    Article  CAS  PubMed  Google Scholar 

  15. McMurry LM, Oethinger M, Levy SB (1998) Triclosan targets lipid synthesis. Nature 394:531–532

    Article  CAS  PubMed  Google Scholar 

  16. Schcolnik-Cabrera A, Chavez-Blanco A, Dominguez-Gomez G et al (2018) Orlistat as a FASN inhibitor and multitargeted agent for cancer therapy. Expert Opin Investig Drugs 27:475–489

    Article  CAS  PubMed  Google Scholar 

  17. Liu B, Wang Y, Fillgrove KL, Anderson VE (2002) Triclosan inhibits enoyl-reductase of type I fatty acid synthase in vitro and is cytotoxic to MCF-7 and SKBr-3 breast cancer cells. Cancer Chemother Pharmacol 49:187–193

    Article  CAS  PubMed  Google Scholar 

  18. Vandhana S, Deepa PR, Aparna G, Jayanthi U, Krishnakumar S (2010) Evaluation of suitable solvents for testing the anti-proliferative activity of triclosan - a hydrophobic drug in cell culture. Indian J Biochem Biophys 47:166–171

    CAS  PubMed  Google Scholar 

  19. Lee HR, Hwang KA, Nam KH, Kim HC, Choi KC (2014) Progression of breast cancer cells was enhanced by endocrine-disrupting chemicals, triclosan and octylphenol, via an estrogen receptor-dependent signaling pathway in cellular and mouse xenograft models. Chem Res Toxicol 27:834–842

    Article  CAS  PubMed  Google Scholar 

  20. Lee GA, Choi KC, Hwang KA (2017) Kaempferol, a phytoestrogen, suppressed triclosan-induced epithelial-mesenchymal transition and metastatic-related behaviors of MCF-7 breast cancer cells. Environ Toxicol Pharmacol 49:48–57

    Article  CAS  PubMed  Google Scholar 

  21. Lee GA, Hwang KA, Choi KC (2017) Inhibitory effects of 3,3’-diindolylmethane on epithelial-mesenchymal transition induced by endocrine disrupting chemicals in cellular and xenograft mouse models of breast cancer. Food Chem Toxicol 109:284–295

    Article  CAS  PubMed  Google Scholar 

  22. Sadowski MC, Pouwer RH, Gunter JH, Lubik AA, Quinn RJ, Nelson CC (2014) The fatty acid synthase inhibitor triclosan: repurposing an anti-microbial agent for targeting prostate cancer. Oncotarget 5:9362–9381

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kim SH, Hwang KA, Shim SM, Choi KC (2015) Growth and migration of LNCaP prostate cancer cells are promoted by triclosan and benzophenone-1 via an androgen receptor signaling pathway. Environ Toxicol Pharmacol 39:568–576

    Article  CAS  PubMed  Google Scholar 

  24. Winitthana T, Lawanprasert S, Chanvorachote P (2014) Triclosan potentiates epithelial-to-mesenchymal transition in anoikis-resistant human lung cancer cells. PLoS ONE 9:e110851

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yoon DS, Choi Y, Cha DS et al (2017) Triclosan Disrupts SKN-1/Nrf2-mediated oxidative stress response in C. elegans and human mesenchymal stem cells. Sci Rep 7:12592

    Article  PubMed  PubMed Central  Google Scholar 

  26. Villalain J, Mateo CR, Aranda FJ, Shapiro S, Micol V (2001) Membranotropic effects of the antibacterial agent Triclosan. Arch Biochem Biophys 390:128–136

    Article  CAS  PubMed  Google Scholar 

  27. Lygre H, Moe G, Skalevik R, Holmsen H (2003) Interaction of triclosan with eukaryotic membrane lipids. Eur J Oral Sci 111:216–222

    Article  CAS  PubMed  Google Scholar 

  28. Lizard G (2001) Changes in light scatter properties are a general feature of cell death but are not characteristic of apoptotically dying cells. Cytometry 46:65–66

    Article  CAS  PubMed  Google Scholar 

  29. Lizard G, Fournel S, Genestier L et al (1995) Kinetics of plasma membrane and mitochondrial alterations in cells undergoing apoptosis. Cytometry 21:275–283

    Article  CAS  PubMed  Google Scholar 

  30. Rodricks JV, Swenberg JA, Borzelleca JF, Maronpot RR, Shipp AM (2010) Triclosan: a critical review of the experimental data and development of margins of safety for consumer products. Crit Rev Toxicol 40:422–484

    Article  CAS  PubMed  Google Scholar 

  31. Ho TS, Ho YP, Wong WY, Chi-Ming Chiu L, Wong YS, Eng-Choon OV (2007) Fatty acid synthase inhibitors cerulenin and C75 retard growth and induce caspase-dependent apoptosis in human melanoma A-375 cells. Biomed Pharmacother 61:578–587

    Article  CAS  PubMed  Google Scholar 

  32. Lang F, Shumilina E, Ritter M, Gulbins E, Vereninov A, Huber SM (2006) Ion channels and cell volume in regulation of cell proliferation and apoptotic cell death. Contrib Nephrol 152:142–160

    Article  CAS  PubMed  Google Scholar 

  33. Bortner CD, Cidlowski JA (2007) Cell shrinkage and monovalent cation fluxes: role in apoptosis. Arch Biochem Biophys 462:176–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ramirez JM, Bai Q, Pequignot M et al (2013) Side scatter intensity is highly heterogeneous in undifferentiated pluripotent stem cells and predicts clonogenic self-renewal. Stem Cells Dev 22:1851–1860

    Article  CAS  PubMed  Google Scholar 

  35. Silva MT (2010) Secondary necrosis: the natural outcome of the complete apoptotic program. FEBS Lett 584:4491–4499

    Article  CAS  PubMed  Google Scholar 

  36. Suzuki J, Umeda M, Sims PJ, Nagata S (2010) Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468:834–838

    Article  CAS  PubMed  Google Scholar 

  37. Zhivotovsky B, Orrenius S (2011) Calcium and cell death mechanisms: a perspective from the cell death community. Cell Calcium 50:211–221

    Article  CAS  PubMed  Google Scholar 

  38. Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284:555–556

    Article  CAS  PubMed  Google Scholar 

  39. Redza-Dutordoir M, Averill-Bates DA (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 1863:2977–2992

    Article  CAS  PubMed  Google Scholar 

  40. Hu H, Zhao X, Ma J et al (2018) Prenatal nicotine exposure retards osteoclastogenesis and endochondral ossification in fetal long bones in rats. Toxicol Lett 295:249–255

    Article  CAS  PubMed  Google Scholar 

  41. Vandhana S, Coral K, Jayanthi U, Deepa PR, Krishnakumar S (2013) Biochemical changes accompanying apoptotic cell death in retinoblastoma cancer cells treated with lipogenic enzyme inhibitors. Biochim Biophys Acta 1831:1458–1466

    Article  CAS  PubMed  Google Scholar 

  42. Lee GA, Choi KC, Hwang KA (2018) Treatment with Phytoestrogens Reversed Triclosan and Bisphenol A-Induced Anti-Apoptosis in Breast Cancer Cells. Biomol Ther (Seoul) 26:503–511

    Article  CAS  Google Scholar 

  43. Marchion DC, Cottrill HM, Xiong Y et al (2011) BAD phosphorylation determines ovarian cancer chemosensitivity and patient survival. Clin Cancer Res 17:6356–6366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mok CL, Gil-Gomez G, Williams O et al (1999) Bad can act as a key regulator of T cell apoptosis and T cell development. J Exp Med 189:575–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Taghiyev AF, Guseva NV, Harada H, Knudson CM, Rokhlin OW, Cohen MB (2003) Overexpression of BAD potentiates sensitivity to tumor necrosis factor-related apoptosis-inducing ligand treatment in the prostatic carcinoma cell line LNCaP. Mol Cancer Res 1:500–507

    CAS  PubMed  Google Scholar 

  46. Jiang L, Luo M, Liu D et al (2013) BAD overexpression inhibits cell growth and induces apoptosis via mitochondrial-dependent pathway in non-small cell lung cancer. Cancer Cell Int 13:53

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fernandez AGL, Crescenzi B, Pierini V et al (2019) A distinct epigenetic program underlies the 17 translocation in myelodysplastic syndromes. Leukemia 33(10):2481–2494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Furuya Y, Krajewski S, Epstein JI, Reed JC, Isaacs JT (1996) Expression of bcl-2 and the progression of human and rodent prostatic cancers. Clin Cancer Res 2:389–398

    CAS  PubMed  Google Scholar 

  49. Zellweger T, Ninck C, Bloch M et al (2005) Expression patterns of potential therapeutic targets in prostate cancer. Int J Cancer 113:619–628

    Article  CAS  PubMed  Google Scholar 

  50. Bold RJ, Virudachalam S, McConkey DJ (2001) BCL2 expression correlates with metastatic potential in pancreatic cancer cell lines. Cancer 92:1122–1129

    Article  CAS  PubMed  Google Scholar 

  51. Collins JA, Schandi CA, Young KK, Vesely J, Willingham MC (1997) Major DNA fragmentation is a late event in apoptosis. J Histochem Cytochem 45:923–934

    Article  CAS  PubMed  Google Scholar 

  52. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gagou ME, Zuazua-Villar P, Meuth M (2010) Enhanced H2AX phosphorylation, DNA replication fork arrest, and cell death in the absence of Chk1. Mol Biol Cell 21:739–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rogakou EP, Nieves-Neira W, Boon C, Pommier Y, Bonner WM (2000) Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J Biol Chem 275:9390–9395

    Article  CAS  PubMed  Google Scholar 

  55. Bassing CH, Suh H, Ferguson DO et al (2003) Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell 114:359–370

    Article  CAS  PubMed  Google Scholar 

  56. Kuo LJ, Yang LX (2008) Gamma-H2AX - a novel biomarker for DNA double-strand breaks. Vivo 22:305–309

    CAS  Google Scholar 

  57. Shay JW, Roninson IB (2004) Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 23:2919–2933

    Article  CAS  PubMed  Google Scholar 

  58. Taneja N, Davis M, Choy JS et al (2004) Histone H2AX phosphorylation as a predictor of radiosensitivity and target for radiotherapy. J Biol Chem 279:2273–2280

    Article  CAS  PubMed  Google Scholar 

  59. Ahel I, Ahel D, Matsusaka T et al (2008) Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins. Nature 451:81–85

    Article  CAS  PubMed  Google Scholar 

  60. Ray Chaudhuri A, Nussenzweig A (2017) The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol 18:610–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pillai JB, Gupta M, Rajamohan SB, Lang R, Raman J, Gupta MP (2006) Poly(ADP-ribose) polymerase-1-deficient mice are protected from angiotensin II-induced cardiac hypertrophy. Am J Physiol Heart Circ Physiol 291:H1545-1553

    Article  CAS  PubMed  Google Scholar 

  62. Reinemund J, Seidel K, Steckelings UM et al (2009) Poly(ADP-ribose) polymerase-1 (PARP-1) transcriptionally regulates angiotensin AT2 receptor (AT2R) and AT2R binding protein (ATBP) genes. Biochem Pharmacol 77:1795–1805

    Article  CAS  PubMed  Google Scholar 

  63. Zhang N, Wang W, Li W et al (2015) Inhibition of 11beta-HSD2 expression by triclosan via induction of apoptosis in human placental syncytiotrophoblasts. J Clin Endocrinol Metab 100:E542-549

    Article  CAS  PubMed  Google Scholar 

  64. Honkisz E, Zieba-Przybylska D, Wojtowicz AK (2012) The effect of triclosan on hormone secretion and viability of human choriocarcinoma JEG-3 cells. Reprod Toxicol 34:385–392

    Article  CAS  PubMed  Google Scholar 

  65. Wada T, Penninger JM (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23:2838–2849

    Article  CAS  PubMed  Google Scholar 

  66. Harada H, Quearry B, Ruiz-Vela A, Korsmeyer SJ (2004) Survival factor-induced extracellular signal-regulated kinase phosphorylates BIM, inhibiting its association with BAX and proapoptotic activity. Proc Natl Acad Sci USA 101:15313–15317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dhanasekaran DN, Reddy EP (2008) JNK signaling in apoptosis. Oncogene 27:6245–6251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dhanasekaran DN, Reddy EP (2017) JNK-signaling: A multiplexing hub in programmed cell death. Genes Cancer 8:682–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Candas D, Lu CL, Fan M et al (2014) Mitochondrial MKP1 is a target for therapy-resistant HER2-positive breast cancer cells. Cancer Res 74:7498–7509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Park BK, Gonzales EL, Yang SM, Bang M, Choi CS, Shin CY (2016) Effects of triclosan on neural stem cell viability and survival. Biomol Ther (Seoul) 24:99–107

    Article  CAS  Google Scholar 

  71. Wu Y, Beland FA, Chen S, Fang JL (2015) Extracellular signal-regulated kinases 1/2 and Akt contribute to triclosan-stimulated proliferation of JB6 Cl 41–5a cells. Arch Toxicol 89:1297–1311

    Article  CAS  PubMed  Google Scholar 

  72. Wong RS (2011) Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 30:87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Giorgi C, Ito K, Lin HK et al (2010) PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 330:1247–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ndombera FT, VanHecke GC, Nagi S, Ahn YH (2016) Carbohydrate-based inducers of cellular stress for targeting cancer cells. Bioorg Med Chem Lett 26:1452–1456

    Article  CAS  PubMed  Google Scholar 

  75. Liu JK (2014) The history of monoclonal antibody development-progress, remaining challenges and future innovations. Ann Med Surg (Lond) 3:113–116

    Article  Google Scholar 

  76. Leivonen SK, Icay K, Jantti K et al (2017) MicroRNAs regulate key cell survival pathways and mediate chemosensitivity. Blood Cancer J 7(12):1–11

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the Deanship of Scientific Research, King Saud University for funding this research project through Vice Deanship of Scientific Research Chairs (DSRVCH).

Funding

This work was funded by the Deanship of Scientific Research, King Saud University, Vice Deanship of Scientific Research Chairs (DSRVCH).

Author information

Authors and Affiliations

Authors

Contributions

MAA, HAMH, MHL, and SMA conceived and designed research. MAA, HAMH, and YP performed experiments. MAA, YP, MHL, and SMA analyzed data, prepared figures, and wrote manuscript. MAA, HAMH, MHL, and SMA critically reviewed the final draft and approved the initial submission.

Corresponding authors

Correspondence to Myon Hee Lee or Shaw M. Akula.

Ethics declarations

Conflict of interest

The authors declare no competing or financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfhili, M.A., Hussein, H.A.M., Park, Y. et al. Triclosan induces apoptosis in Burkitt lymphoma-derived BJAB cells through caspase and JNK/MAPK pathways. Apoptosis 26, 96–110 (2021). https://doi.org/10.1007/s10495-020-01650-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-020-01650-0

Keywords

Navigation