Skip to main content

Advertisement

Log in

Profiling drug-induced cell death pathways in the zebrafish lateral line

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Programmed cell death (PCD) is an important process in development and disease, as it allows the body to rid itself of unwanted or damaged cells. However, PCD pathways can also be activated in otherwise healthy cells. One such case occurs in sensory hair cells of the inner ear following exposure to ototoxic drugs, resulting in hearing loss and/or balance disorders. The intracellular pathways that determine if hair cells die or survive following this or other ototoxic challenges are incompletely understood. We use the larval zebrafish lateral line, an external hair cell-bearing sensory system, as a platform for profiling cell death pathways activated in response to ototoxic stimuli. In this report the importance of each pathway was assessed by screening a custom cell death inhibitor library for instances when pathway inhibition protected hair cells from the aminoglycosides neomycin or gentamicin, or the chemotherapy agent cisplatin. This screen revealed that each ototoxin likely activated a distinct subset of possible cell death pathways. For example, the proteasome inhibitor Z-LLF-CHO protected hair cells from either aminoglycoside or from cisplatin, while d-methionine, an antioxidant, protected hair cells from gentamicin or cisplatin but not from neomycin toxicity. The calpain inhibitor leupeptin primarily protected hair cells from neomycin, as did a Bax channel blocker. Neither caspase inhibition nor protein synthesis inhibition altered the progression of hair cell death. Taken together, these results suggest that ototoxin-treated hair cells die via multiple processes that form an interactive network of cell death signaling cascades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yuan J, Horvitz HR (2004) A first insight into the molecular mechanisms of apoptosis. Cell S116:S53–S56

    Article  Google Scholar 

  2. Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  PubMed  CAS  Google Scholar 

  3. Zimmermann KC, Bonzon C, Green DR (2001) The machinery of programmed cell death. Pharmacol Ther 92(1):57–70

    Article  PubMed  CAS  Google Scholar 

  4. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    Article  PubMed  CAS  Google Scholar 

  5. Baehrecke EH (2002) How death shapes life during development. Nat Reviews Mol Cell Biol 3:779–787

    Article  CAS  Google Scholar 

  6. Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147:742–758

    Article  PubMed  CAS  Google Scholar 

  7. Thompson HJ, Strange R, Schedin PJ (1992) Apoptosis in the genesis and prevention of cancer. Cancer Epidemiol Biomarkers Prev 1(7):597–602

    PubMed  CAS  Google Scholar 

  8. Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis, and autophagy. Curr Opin Cell Biol 16:663–669

    Article  PubMed  CAS  Google Scholar 

  9. Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73(4):1907–1916

    Article  PubMed  CAS  Google Scholar 

  10. Mourbarak RS, Yuste VJ, Artus C, Bouharrour A, Greer PA, Menissier de Murcia J, Susin SA (2007) Sequential activation of poly(ADP-ribose) polymerase I, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol Cell Biol 27(13):4844–4862

    Article  CAS  Google Scholar 

  11. Baritaud M, Boujrad H, Lorenzo HK, Krantic S, Susin SA (2010) Histone H2AX: The missing link in AIF-mediated caspase-independent programmed necrosis. Cell Cycle 9(16):3166–3173

    Article  PubMed  CAS  Google Scholar 

  12. Delavallée L, Cabon L, Galán-Malo P, Lorenzo HK, Susin SA (2011) AIF-mediated caspase-independent necroptosis: a new chance for targeted therapeutics. IUBMB Life 63(4):221–232

    Article  PubMed  CAS  Google Scholar 

  13. Cabon L, Galán-Malo P, Bouharrour A, Delavallée L, Brunelle-Navas M-N, Lorenzo HK, Gross A, Susin SA (2012) BID regulates AIF-mediated caspase-independent necroptosis by promoting Bax activation. Cell Death Differ 19:245–256

    Article  PubMed  CAS  Google Scholar 

  14. Forge A, Li L (2000) Apoptotic death of hair cells in mammalian vestibular sensory epithelia. Hear Res 139(1–2):97–115

    Article  PubMed  CAS  Google Scholar 

  15. Jiang H, Sha SH, Forge A, Schacht J (2006) Caspase-independent pathways of hair cell death induced by kanamycin in vivo. Cell Death Differ 13(1):20–30

    Article  PubMed  CAS  Google Scholar 

  16. Owens KN, Coffin AB, Hong LS, Bennett KO, Rubel EW, Raible DW (2009) Response of mechanosensory hair cells of the zebrafish lateral line to aminoglycosides reveals distinct cell death pathways. Hear Res 253(1–2):32–41

    Article  PubMed  CAS  Google Scholar 

  17. Cheng AG, Cunningham LL, Rubel EW (2005) Mechanisms of hair cell death and protection. Curr Opin Otolaryngol Head Neck Surg 13(6):343–348

    Article  PubMed  Google Scholar 

  18. Rybak LP (2007) Mechanisms of cisplatin ototoxicity and progress in otoprotection. Curr Opin Otolaryngol Head Neck Surg 15:364–369

    Article  PubMed  Google Scholar 

  19. Schacht J, Talaska AE, Rybak LP (2012) Cisplatin and aminoglycoside antibiotics: hearing loss and its prevention. Anat Rec (Hoboken) 295(11):1837–1850

    Article  CAS  Google Scholar 

  20. Karasawa T, Steyger PS (2011) Intracellular mechanisms of aminoglycoside-induced cytotoxicity. Integr Biol (Camb) 3(9):879–886

    Article  CAS  Google Scholar 

  21. Hirose K, Westrum LE, Stone JS, Zirpel L, Rubel EW (1999) Dynamic studies of ototoxicity in mature avian auditory epithelium. Ann NY Acad Sci 884:389–409

    Article  PubMed  CAS  Google Scholar 

  22. Hirose K, Westrum LE, Cunningham DE, Rubel EW (2004) Electron microscopy of degenerative changes in the chick basilar papilla after gentamicin exposure. J Comp Neurol 470(2):164–180

    Article  PubMed  Google Scholar 

  23. Mangiardi DA, McLaughlin-Williamson K, May KE, Messana EP, Mountain DC, Cotanche DA (2004) Progression of hair cell ejection and molecular markers of apoptosis in the avian cochlea following gentamicin treatment. J Comp Neurol 475(1):1–18

    Article  PubMed  CAS  Google Scholar 

  24. Matsui JI, Gale JE, Warchol ME (2004) Critical signaling events during the aminoglycoside-induced death of sensory hair cells in vitro. J Neurobiol 61(2):250–266

    Article  PubMed  CAS  Google Scholar 

  25. Owens KN, Cunningham DE, MacDonald G, Rubel EW, Raible DW, Pujol R (2007) Ultrastructural analysis of aminoglycoside-induced hair cell death in the zebrafish lateral line reveals an early mitochondrial response. J Comp Neurol 502(4):522–543

    Article  PubMed  CAS  Google Scholar 

  26. Cunningham LL, Cheng AG, Rubel EW (2002) Caspase activation in hair cells of the mouse utricle exposed to neomycin. J Neurosci 22(19):8532–8540

    PubMed  CAS  Google Scholar 

  27. Matsui JI, Ogilvie JM, Warchol ME (2002) Inhibition of caspases prevents ototoxic and ongoing hair cell death. J Neurosci 22(4):1218–1227

    PubMed  CAS  Google Scholar 

  28. Wang J, Ladrech S, Pujol R, Brabet P, Van de Water TR, Puel JL (2004) Caspase inhibitors, but not c-Jun NH2-terminal kinase inhibitor treatment, prevent cisplatin-induced hearing loss. Cancer Res 64(24):9217–9224

    Article  Google Scholar 

  29. Tabuchi K, Pak K, Chavez E, Ryan AF (2007) Role of inhibitor of apoptosis protein in gentamicin-induced cochlear hair cell damage. Neuroscience 149(1):213–222

    Article  PubMed  CAS  Google Scholar 

  30. Chan DK, Lieberman DM, Musatov S, Goldfein JA, Selesnick SH, Kaplitt MG (2007) Protection against cisplatin-indued ototoxicity by adeno-associated virus-mediated delivery of the X-linked inhibitor of apoptosis protein is not dependent on caspase inhibition. Otol Neurotol 28:417–425

    Article  PubMed  Google Scholar 

  31. Metcalfe WK, Kimmel CB, Schabtach E (1985) Anatomy of the posterior lateral line system in young larvae of the zebrafish. J Comp Neurol 233(3):377–389

    Article  PubMed  CAS  Google Scholar 

  32. Coombs S, Görner P, Münz H (1989) The Mechanosensory Lateral Line: Neurobiology and Evolution. Springer-Verlag, NY

    Book  Google Scholar 

  33. Raible DW, Kruse GJ (2000) Organization of the lateral line system in embryonic zebrafish. J Comp Neurol 421(2):189–198

    Article  PubMed  CAS  Google Scholar 

  34. Dijkgraaf S (1963) The functioning and significance of the lateral line organs. Biol Rev 38:51–105

    Article  PubMed  CAS  Google Scholar 

  35. Montgomery JC, MacDonald JA (1987) Sensory tuning of lateral line receptors in Antarctic fish to the movements of planktonic prey. Science 235:195–196

    Article  PubMed  CAS  Google Scholar 

  36. Montgomery JC, Baker CF, Carton AG (1997) The lateral line can mediate rheotaxis in fish. Nature 389:960–963

    Article  CAS  Google Scholar 

  37. Coombs S, Braun CB, Donovan B (2001) The orienting response of Lake Michigan mottled sculpin is mediated by canal neuromasts. J Exp Biol 204:337–348

    PubMed  CAS  Google Scholar 

  38. New JG, Fewkes LA, Khan SN (2001) Strike feeding behavior in the muskellunge, Esox masquinongy: contributions of the lateral line and visual sensory systems. J Exp Biol 204:1207–1221

    PubMed  CAS  Google Scholar 

  39. Suli A, Watson GM, Rubel EW, Raible DW (2012) Rheotaxis in larval zebrafish is mediated by lateral line mechanosensory hair cells. PLoS ONE 7(2):e29727

    Article  PubMed  CAS  Google Scholar 

  40. Harris JA, Cheng AG, Cunningham LL, MacDonald G, Raible DW, Rubel EW (2003) Neomycin-induced hair cell death and rapid regeneration in the lateral line of zebrafish (Danio rerio). J Assoc Res Otolaryngol 4(2):219–234

    Article  PubMed  Google Scholar 

  41. Coffin AB, Kelley MW, Manley GA, Popper AN (2004) Evolution of sensory hair cells. In: Manley GA, Fay RR, Popper AN (eds) Evolution of the Auditory System. Springer-Verlag, New York

    Google Scholar 

  42. Coffin AB, Ou H, Owens KN, Santos F, Simon JA, Rubel EW, Raible DW (2010) Chemical screening for hair cell loss and protection in the zebrafish lateral line. Zebrafish 7(1):3–11

    Article  PubMed  CAS  Google Scholar 

  43. Santos F, MacDonald G, Rubel EW, Raible DW (2006) Lateral line hair cell maturation is a determinant of aminoglycoside susceptibility in zebrafish (Danio rerio). Hear Res 213(1–2):25–33

    Article  PubMed  CAS  Google Scholar 

  44. Ou HC, Raible DW, Rubel EW (2007) Cisplatin-induced hair cell loss in zebrafish (Danio rerio) lateral line. Hear Res 233(1–2):46–53

    Article  PubMed  CAS  Google Scholar 

  45. Owens KN, Cunningham DE, MacDonald G, Rubel EW, Raible DW, Pujol R (2007) Ultrastructural analysis of aminoglycoside-induced hair cell death in the zebrafish lateral line reveals an early mitochondrial response. J Comp Neurol 502(4):522–543

    Article  PubMed  CAS  Google Scholar 

  46. Owens KN, Coffin AB, Hong LS, Bennett KO, Rubel EW, Raible DW (2009) Response of mechanosensory hair cells of the zebrafish lateral line to aminoglycosides reveals distinct cell death pathways. Hear Res 253(1–2):32–41

    Article  PubMed  CAS  Google Scholar 

  47. Owens KN, Santos F, Roberts B, Linbo T, Coffin AB, Knisely AJ, Simon JA, Rubel EW, Raible DW (2008) Identification of genetic and chemical modulators of zebrafish mechanosensory hair cell death. PLoS Genet 4(2):e1000020

    Article  PubMed  CAS  Google Scholar 

  48. Ou HC, Cunningham LL, Francis SP, Brandon CS, Simon JA, Raible DW, Rubel EW (2009) Identification of FDA-approved drugs and bioactives that protect hair cells in the zebrafish (Danio rerio) lateral line and mouse (Mus musculus) utricle. J Assoc Res Otolaryngol 10(2):191–203

    Article  PubMed  Google Scholar 

  49. Ou H, Simon JA, Rubel EW, Raible DW (2012) Screening for chemicals that affect hair cell death and survival in the zebrafish lateral line. Hear Res 288(1–2):58–66

    Article  PubMed  CAS  Google Scholar 

  50. Vlatsits AL, Simon JA, Raible DW, Rubel EW, Owens KN (2012) Screen of FDA-approved drug library reveals compounds that protect hair cells from aminoglycosides and cisplatin. Hear Res doi. doi:10.1016/j.heares.2012.08.002

    Google Scholar 

  51. Coffin AB, Reinhart KE, Owens KN, Raible DW, Rubel EW (2009) Extracellular divalent cations modulate aminoglycoside-induced hair cell death in the zebrafish lateral line. Hear Res 253(1–2):42–51

    Article  PubMed  CAS  Google Scholar 

  52. McFadden SL, Ding D, Salvemini D, Salvi RJ (2003) M40403, a superoxide dismutase mimetic, protects cochlear hair cells from gentamicin, but not cisplatin toxicity. Toxicol Appl Pharmacol 186:46–54

    Article  PubMed  CAS  Google Scholar 

  53. Westerfield M (2000) The Zebrafish Book: A Guide for Laboratory Use of Zebrafish (Danio rerio), 4th edn. University of Oregon Press, Eugene

    Google Scholar 

  54. Nakatsuka M, Asagiri K, Noguchi S, Habara T, Kudo T (2000) Nafamostat mesilate, a serine protease inhibitor, suppresses lipopolysaccharide-induced nitric oxide synthesis and apoptosis in culture human trophoblasts. Life Sci 67(10):1243–1250

    Article  PubMed  CAS  Google Scholar 

  55. Steyger PS, Peters SL, Rehling J, Hordichok A, Dai CF (2003) Uptake of gentamicin by bullfrog saccular hair cells in vitro. J Assoc Res Otolaryngol 4(4):565–578

    Article  PubMed  CAS  Google Scholar 

  56. Dai CF, Mangiardi D, Cotanche DA, Steyger PS (2006) Uptake of fluorescent gentamicin by vertebrate sensory cells in vivo. Hear Res 213(1–2):64–78

    Article  PubMed  CAS  Google Scholar 

  57. Geiger GA, Parker SE, Beothy AP, Tucker JA, Mullins MC, Kao GD (2006) Zebrafish as a “biosensor”? Effects of ionizing radiation and amifostine on embryonic viability and development. Cancer Res 66:8172–8181

    Article  PubMed  CAS  Google Scholar 

  58. Dong W, Teraoka H, Yamazaki K, Tsukiyama S, Imani S, Imagawa T, Stegeman JJ, Peterson RE, Hiraga T (2002) 2,3,7,8-Tetrachlorodibenzo-p-dioxin toxicity in the zebrafish embryo: local circulation failure in the dorsal midbrain is associated with increased apoptosis. Toxicol Sci 69(1):191–201

    Article  PubMed  CAS  Google Scholar 

  59. Rehen SK, Varella MH, Freitas FG, Moraes MO, Linden R (1996) Contrasting effects of protein synthesis inhibition and of cyclic AMP on apoptosis in the developing retina. Development 122(5):1439–1448

    PubMed  CAS  Google Scholar 

  60. Ray SK, Matzelle DD, Wilford GG, Hogan EL, Banik NL (2001) Cell death in spinal cord injury (SCI) requires de novo protein synthesis. Calpain inhibitor E-64-d provides neuroprotection in SCI lesion and penumbra. Ann NY Acad Sci 939:436–449

    Article  PubMed  CAS  Google Scholar 

  61. Liwak U, Faye MD, Holcik M (2012) Translation control in apoptosis. Exp Oncol 34(3):218–230

    PubMed  CAS  Google Scholar 

  62. Negron JF, Lockshin RA (2004) Activation of apoptosis and caspase-3 in zebrafish early gastrulae. Dev Dyn 231(1):161–170

    Article  PubMed  CAS  Google Scholar 

  63. Belting H-G, Wendik B, Lunde K, Leichsenring M, Mössner R, Driever W, Onichtchouk D (2011) Pou5f1 contributes to dorsoventral patterning by positive regulation of vox and modulation of fgf8a expression. Dev Biol 356(2):323–336

    Article  PubMed  CAS  Google Scholar 

  64. Hayes RL, Wang KK, Kampfl A, Postmantur RM, Newcomb JK, Clifton GL (1998) Potential contribution of proteases to neuronal damage. Drug News Perspect 11(4):215–222

    PubMed  CAS  Google Scholar 

  65. Furuhashi K (2002) Identification and characterization of a cathepsin B-like protease in Physarum sclerotium. Int J Biochem Cell Biol 34(10):1308–1316

    Article  PubMed  CAS  Google Scholar 

  66. Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R (2001) A serine protease, HtrA2, is release from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 8:613–621

    Article  PubMed  CAS  Google Scholar 

  67. Ding D, Stracher A, Salvi RJ (2002) Leupeptin protects cochlear and vestibular hair cells from gentamicin ototoxicity. Hear Res 164(1–2):115–126

    Article  PubMed  CAS  Google Scholar 

  68. Ladrech S, Guitton M, Saido T, Lenoir M (2004) Calpain activity in the amikacin-damaged rat cochlea. J Comp Neurol 477(2):149–160

    Article  PubMed  CAS  Google Scholar 

  69. Momiyama J, Hashimoto T, Matsubara A, Futai K, Namba A, Shinkawa H (2006) Leupeptin, a calpain inhibitor, protects inner ear hair cells from aminoglycoside ototoxicity. Tohoku J Exp Med 209:89–97

    Article  PubMed  CAS  Google Scholar 

  70. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, Moll UM (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11(3):577–590

    Article  PubMed  CAS  Google Scholar 

  71. Moll U, Wolff S, Speidel D, Deppert W (2005) Transcription-independent proapoptotic functions of p53. Curr Opin Cell Biol 17:631–636

    Article  PubMed  CAS  Google Scholar 

  72. Chipuk J, Green D (2006) Dissecting p53-dependent apoptosis. Cell Death Differ 13:994–1002

    Article  PubMed  CAS  Google Scholar 

  73. Cunningham LL, Matsui JI, Warchol ME, Rubel EW (2004) Overexpression of Bcl-2 prevents neomycin-induced hair cell death and caspase-9 activation in the adult mouse utricle in vitro. J Neurobiol 60(1):89–100

    Article  PubMed  CAS  Google Scholar 

  74. Zhang M, Liu W, Ding D, Salvi R (2003) Pifithrin-alpha suppresses p53 and protects cochlear and vestibular hair cells from cisplatin-induced apoptosis. Neuroscience 120(1):191–205

    Article  PubMed  CAS  Google Scholar 

  75. Huth ME, Ricci AJ, Cheng AG (2011) Mechanisms of aminoglycoside ototoxicity and targets of hair cell protection. Int J Otolaryngol doi. doi:10.1155/2011/937861

    Google Scholar 

  76. Orlowski RZ (1999) The role of the ubiquitin-proteasome pathway in apoptosis. Cell Death Differ 6:303–313

    Article  PubMed  CAS  Google Scholar 

  77. Taylor RC, Adrain C, Martin SJ (2005) Proteases, proteasomes and apoptosis: breaking Ub is hard to do. Cell Death Differ 12(9):1213–1217

    Article  PubMed  CAS  Google Scholar 

  78. Moreau P, Richardson PG, Cavo M, Orlowski RZ, San Miguel JF, Palumbo A, Harousseau JL (2012) Proteasome inhibitors in multiple myeloma: 10 years later. Blood 120(5):947–959. doi:10.1182/blood-2012-04-403733

    Article  PubMed  CAS  Google Scholar 

  79. Sadoul R, Fernandez PA, Quiquerez AL, Martinou I, Maki M, Schröter M, Becherer JD, Irmler M, Tschopp J, Martinou JC (1996) Involvement of the proteasome in the programmed cell death of NGF-deprived sympathetic neurons. EMBO J 15(15):3845–3852

    PubMed  CAS  Google Scholar 

  80. Yang W, Monroe J, Zhang Y, George D, Bremer E, Li H (2006) Proteasome inhibition induces both pro- and anti-cell death pathways in prostate cancer cells. Cancer Lett 243:217–227

    Article  PubMed  CAS  Google Scholar 

  81. Yamaguchi H, Hsu JL, Hung M-C (2012) Regulation of ubiquitin-mediated protein degradation by survival kinases in cancer. Front Oncol 2(15):1–9

    Google Scholar 

  82. Hirose K, Hockenbery DM, Rubel EW (1997) Reactive oxygen species in chick hair cells after gentamicin exposure in vitro. Hear Res 104:1–14

    Article  PubMed  CAS  Google Scholar 

  83. Kopke RD, Liu W, Gabaizadeh R, Jacono A, Feghali J, Spray D, Garcia P, Steinman H, Melgrange B, Ruben RJ, Rybak L, Van de Water TR (1997) Use of organotypic cultures of Corti’s organ to study the protective effects of antioxidant molecules on cisplatin-induced damage of auditory hair cells. Am J Otol 18(5):559–571

    Google Scholar 

  84. Schacht J (1999) Antioxidant therapy attenuates aminoglycoside-induced hearing loss. Ann NY Acad Sci 884:125–130

    PubMed  CAS  Google Scholar 

  85. Campbell KCM, Meech RP, Klemens JJ, Gerberi MT, Dyrstad SSW, Larsen DL, Mitchell DL, El-Azizi M, Verhulst SJ, Hughes LF (2007) Prevention of noise- and drug-induced hearing loss with d -methionine. Hear Res 226:92–103

    Article  PubMed  CAS  Google Scholar 

  86. Choung YH, Taura A, Pak K, Choi SJ, Masuda M, Ryan AF (2009) Generation of highly-reactive oxygen species is closely related to hair cell damage in rat organ of Corti treated with gentamicin. Neuroscience 161(1):214–226

    Article  PubMed  CAS  Google Scholar 

  87. Ton C, Parng C (2005) The use of zebrafish for assessing ototoxic and otoprotective agents. Hear Res 208(1–2):79–88

    Article  PubMed  CAS  Google Scholar 

  88. Evans P, Halliwell B (1999) Free radicals and hearing. Causes, consequences, and criteria. Ann NY Acad Sci 844:19–20

    Article  Google Scholar 

  89. Piantadosi CA, Suliman HB (2012) Redox regulation of mitochondrial biogenesis. Free Radic Biol Med S0891–5849(12):01139–01140. doi:10.1016/j.freeradbiomed.2012.09.014

    Google Scholar 

  90. Wall SB, Oh JY, Diers AR, Landar A (2012) Oxidative modification of proteins: an emerging mechanism of cell signaling. Front Physiol 3:369. doi:10.3389/fphys.2012.00369

    Article  PubMed  Google Scholar 

  91. Song BB, Schacht J (1996) Variable efficacy of radical scavengers and iron chelators to attenuate gentamicin ototoxicity in guinea pig in vivo. Hear Res 94(1–2):87–93

    Article  PubMed  CAS  Google Scholar 

  92. Conlon BJ, Perry BP, Smith DW (1998) Attenuation of neomycin ototoxicity by iron chelation. Laryngoscope 108(2):284–287

    Article  PubMed  CAS  Google Scholar 

  93. Sha SH, Schacht J (1999) Stimulation of free radical formation by aminoglycoside antibiotics. Hear Res 128(1–2):112–118

    Article  PubMed  CAS  Google Scholar 

  94. Sha SH, Oiu JH, Schacht J (2006) Aspirin to prevent gentamicin-induced hearing loss. N Engl J Med 354(17):1856–1857

    Article  PubMed  CAS  Google Scholar 

  95. Bas E, Van De Water TR, Gupta C, Dinh J, Vu L, Martínez-Soriano F, Láinez JM, Marco J (2012) Efficacy of three drugs for protecting against gentamicin-induced hair cell and hearing losses. Br J Pharmacol 166(6):1888–1904

    Article  CAS  Google Scholar 

  96. Xie J, Talaska AE, Schacht J (2011) New developments in aminoglycoside therapy and ototoxicity. Hear Res 281(1–2):28–37

    Article  PubMed  CAS  Google Scholar 

  97. Giansanti V, Torriglia A, Scovassi AI (2011) Conversation between apoptosis and autophagy: “Is it your turn or mine?”. Apoptosis 16:321–333

    Article  PubMed  Google Scholar 

  98. Long JS, Ryan KM (2012) New frontiers in promoting tumour cell death: targeting apoptosis, necroptosis, and autophagy. Oncogene 2012:1–16

    Google Scholar 

  99. Marquez RT, Xu L (2012) Bcl-2:Beclin 1 complex: multiple mechanisms regulating autophagy/apoptosis toggle switch. Am J Cancer Res 2(2):214–221

    PubMed  CAS  Google Scholar 

  100. Levine B, Sinha S, Kroemer G (2008) Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy 4(5):600–606

    PubMed  CAS  Google Scholar 

  101. Aoyama T, Ino Y, Ozeki M, Oda M, Sato T, Koshiyama Y, Suzuki S, Fukita M (1984) Pharmacological studies of FUT-175, nafamstat mesilate. I. Inhibition of protease activity in in vitro and in vivo experiments. Jpn J Pharmacol 35(3):203–227

    Article  PubMed  CAS  Google Scholar 

  102. Chen CC, Wang SS, Lee FY (2007) Action of antiproteases on the inflammatory response in acute pancreatitis. JOP 8:488–494

    PubMed  Google Scholar 

  103. Shinoda T (2010) Anticoagulation in acute blood purification for acute renal failure in critical care. Contrib Nephrol 116:119–125

    Article  Google Scholar 

  104. Gale JE, Marcotti W, Kennedy HJ, Kros CJ, Richardson GP (2001) FM1-43 dye behaves as a permeant blocker of the hair-cell mechanotransducer channel. J Neurosci 21(18):7013–7025

    PubMed  CAS  Google Scholar 

  105. Marcotti W, van Netten SM, Kros CJ (2005) The aminoglycoside antibiotic dihydrostreptomycin rapidly enters mouse outer hair cells through the mechano-electrical transducer channels. J Physiol 567(Pt 2):505–521

    Article  PubMed  CAS  Google Scholar 

  106. Alharazneh A, Luk L, Huth M, Monfared A, Steyger PS, Cheng AG, Ricci AJ (2011) Functional hair cell mechanotransducer channels are required for aminoglycoside ototoxicity. PLoS ONE 6(7):e22347

    Article  PubMed  CAS  Google Scholar 

  107. Thomas, AJ, Hailey DW, Stawicki TM, Wu P, Coffin AB, Rubel EW, Raible DW, Simon JA, Ou HC (submitted) Functional mechanotransduction is required for cisplatin-induced hair cell death in the zebrafish lateral line. J Neurosci

  108. Hagiwara S, Iwasaka H, Noguchi T (2007) Nafamostat mesilate inhibits the expression of HMGB1 in lipopolysaccharide-induced acute lung injury. J Anesth 21:164–170

    Article  PubMed  Google Scholar 

  109. Livesey KM, Kang R, Vernon P, Buchser W, Loughran P, Watkins SC, Zhang L, Manfredi JJ, Zeh HJ III, Li L, Lotze MT, Tang D (2012) p53/HMGB1 complexes regulate autophagy and apoptosis. Cancer Res 72(8):1996–2005

    Article  PubMed  CAS  Google Scholar 

  110. Cregan SP, Fortin A, MacLaurin JG, Callaghan SM, Cecconi F, Yu SW, Dawson TM, Dawson VL, Park DS, Kroemer G, Slack RS (2002) Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death. J Cell Biol 158(3):507–517

    Article  PubMed  CAS  Google Scholar 

  111. Pradelli LA, Bénéteau Ricci JE (2010) Mitochondrial control of caspase-dependent and –independent cell death. Cell Mol Life Sci 67:1589–1597

    Article  PubMed  CAS  Google Scholar 

  112. Cheung ECC, Melanson-Drapeau L, Cregan SP, Vanderluit JL, Ferguson KL, McIntosh WC, Park DS, Bennett SAL, Slack RS (2005) Apoptosis-inducing factor is a key factor in neuronal cell death propagated by BAX-dependent and BAX-independent mechanisms. J Neurosci 25(6):1324–1334

    Article  PubMed  CAS  Google Scholar 

  113. Matsui JI, Haque A, Huss D, Messana EP, Alosi JA, Roberson DW, Cotanche DA, Dickman JD, Warchol ME (2003) Caspase inhibitors promote vestibular hair cell survival and function after aminoglycoside treatment in vivo. J Neurosci 23(14):6111–6122

    PubMed  CAS  Google Scholar 

  114. Kaiser CL, Chapman BJ, Guidi JL, Terry CE, Mangiardi DA, Cotanche DA (2008) Comparison of activated caspase detection methods in the gentamicin-treated chick cochlea. Hear Res 240(1–2):1–11

    Article  PubMed  CAS  Google Scholar 

  115. Williams JA, Holder N (2000) Cell turnover in neuromasts of zebrafish larvae. Hear Res 143:171–181

    Article  PubMed  CAS  Google Scholar 

  116. Nakagawa T, Yamane H, Takayama M, Sunami K, Nakai Y (1998) Apoptosis of guinea pig cochlear hair cells following aminoglycoside treatment. Eur Arch Otorhinolaryngol 255:127–131

    Article  PubMed  CAS  Google Scholar 

  117. Taylor RR, Nevill G, Forge A (2008) Rapid hair cell loss: a mouse model for cochlear lesions. J Assoc Res Otolaryngol 9(1):44–64

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Institute on Deafness and Other Communication Disorders (NIDCD) Grants DC004661, DC005987 (D.W.R. and E.W R.), DC009931 (A.B.C.), and DC011344 (A.B.C.). Support was provided by the Virginia Merrill Bloedel Hearing Research Center. We thank several anonymous reviewers for their comments that helped strengthen this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison B. Coffin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coffin, A.B., Williamson, K.L., Mamiya, A. et al. Profiling drug-induced cell death pathways in the zebrafish lateral line. Apoptosis 18, 393–408 (2013). https://doi.org/10.1007/s10495-013-0816-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0816-8

Keywords

Navigation