Skip to main content
Log in

Stat3 Has a Different Role in Axon Growth During Development Than It Does in Axon Regeneration After Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Signal transducer and activator of transcription 3 (STAT3) is essential for neural development and regeneration as a key transcription factor and mitochondrial activator. However, the mechanism of Stat3 in axon development and regeneration has not been fully understood. In this study, using zebrafish posterior lateral line (PLL) axons, we demonstrate that Stat3 plays distinct roles in PLL axon embryonic growth and regeneration. Our experiments indicate that stat3 is required for PLL axon extension. In stat3 mutant zebrafish, the PLL axon ends were stalled at the level of the cloaca, and expression of stat3 rescues the PLL axon growth in a cell-autonomous manner. Jak/Stat signaling inhibition did not affect PLL axon growth indicating Jak/Stat was dispensable for PLL axon growth. In addition, we found that Stat3 was co-localized with mitochondria in PLL axons and important for the mitochondrial membrane potential and ATPase activity. The PLL axon growth defect of stat3 mutants was mimicked and rescued by rotenone and DCHC treatment, respectively, which suggests that Stat3 regulates PLL axon growth through mitochondrial Stat3. By contrast, mutation of stat3 or Jak/Stat signaling inhibition retarded PLL axon regeneration. Meanwhile, we also found Schwann cell migration was also inhibited in stat3 mutants. Taken together, Stat3 is required for embryonic PLL axon growth by regulating the ATP synthesis efficiency of mitochondria, whereas Stat3 stimulates PLL axon regeneration by regulating Schwann cell migration via Jak/Stat signaling. Our findings show a new mechanism of Stat3 in axon growth and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data relevant for this study is included within this manuscript or uploaded as supplementary information.

References

  1. Kaplan A, Ong Tone S, Fournier AE (2015) Extrinsic and intrinsic regulation of axon regeneration at a crossroads. Front Mol Neurosci 8:27. https://doi.org/10.3389/fnmol.2015.00027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sheng Z-H (2017) The interplay of axonal energy homeostasis and mitochondrial trafficking and anchoring. Trends Cell Biol 27:403–416. https://doi.org/10.1016/j.tcb.2017.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Smith GM, Gallo G (2018) The role of mitochondria in axon development and regeneration. Dev Neurobiol 78:221–237. https://doi.org/10.1002/dneu.22546

    Article  CAS  PubMed  Google Scholar 

  4. Min Q, Parkinson DB, Dun X-P (2021) Migrating Schwann cells direct axon regeneration within the peripheral nerve bridge. Glia 69:235–254. https://doi.org/10.1002/glia.23892

    Article  PubMed  Google Scholar 

  5. Avalle L, Poli V (2018) Nucleus, mitochondrion, or reticulum? STAT3 à La Carte. Int J Mol Sci 19:E2820. https://doi.org/10.3390/ijms19092820

    Article  CAS  Google Scholar 

  6. Kiu H, Nicholson SE (2012) Biology and significance of the JAK/STAT signaling pathways. Growth Factors 30:88–106. https://doi.org/10.3109/08977194.2012.660936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gough DJ, Corlett A, Schlessinger K, Wegrzyn J, Larner AC, Levy DE (2009) Mitochondrial Stat3 supports ras-dependent oncogenic transformation. Science 324:1713–1716. https://doi.org/10.3109/08977194.2012.660936

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rincon M, Pereira FV (2018) A new perspective: mitochondrial stat3 as a regulator for lymphocyte function. Int J Mol Sci 19:E1656. https://doi.org/10.3390/ijms19061656

    Article  CAS  Google Scholar 

  9. Wegrzyn J, Potla R, Chwae YJ, Sepuri NB, Zhang Q, Koeck T, Derecka M, Szczepanek K et al  (2009) Function of mitochondrial Stat3 in cellular respiration. Science 323:793–797. https://doi.org/10.1126/science.1164551

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yu H, Lee H, Herrmann A, Buettner R, Jove R (2014) Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer 14:736–746. https://doi.org/10.1038/nrc3818

    Article  CAS  PubMed  Google Scholar 

  11. Smith PD, Sun F, Park KK, Cai B, Wang C, Kuwako K, Martinez-Carrasco I, Connolly L et al (2009) SOCS3 deletion promotes optic nerve regeneration in vivo. Neuron 64:617–623. https://doi.org/10.1016/j.neuron.2009.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Elsaeidi F, Bemben MA, Zhao X-F, Goldman D (2014) Jak/Stat signaling stimulates zebrafish optic nerve regeneration and overcomes the inhibitory actions of Socs3 and Sfpq. J Neurosci 34:2632–2644. https://doi.org/10.1523/JNEUROSCI.3898-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Benito C, Davis CM, Gomez-Sanchez JA, Turmaine M, Meijer D, Poli V, Mirsky R, Jessen KR (2017) STAT3 controls the long-term survival and phenotype of repair Schwann cells during nerve regeneration. J Neurosci 37:4255–4269. https://doi.org/10.1523/JNEUROSCI.3481-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lin G, Zhang H, Sun F, Lu Z, Reed-Maldonado A, Lee YC, Wang G, Banie L et al (2016) Brain-derived neurotrophic factor promotes nerve regeneration by activating the JAK/STAT pathway in Schwann cells. Transl Androl Urol 5:167. https://doi.org/10.21037/tau.2016.02.03

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hwang J, Namgung U (2021) Phosphorylation of STAT3 by axonal Cdk5 promotes axonal regeneration by modulating mitochondrial activity. Exp Neurol 335:113511. https://doi.org/10.1016/j.expneurol.2020.113511

    Article  CAS  PubMed  Google Scholar 

  16. Zhou L, Too H-P (2011) Mitochondrial localized STAT3 is involved in NGF induced neurite outgrowth. PLoS One 6:e21680. https://doi.org/10.1371/journal.pone.0021680

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Luo X, Ribeiro M, Bray ER, Lee DH, Yungher BJ, Mehta ST, Thakor KA, Diaz F et al.  (2016) Enhanced transcriptional activity and mitochondrial localization of STAT3 Co-induce axon regrowth in adult central nervous system. Cell Rep 15:398–410. https://doi.org/10.1016/j.celrep.2016.03.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pujol-Martí J, López-Schier H (2013) Developmental and architectural principles of the lateral-line neural map. Front Neural Circuits 7:47. https://doi.org/10.3389/fncir.2013.00047

    Article  PubMed  PubMed Central  Google Scholar 

  19. Villegas R, Martin SM, O’Donnell KC, Carrillo SA, Sagasti A, Allende ML (2012) Dynamics of degeneration and regeneration in developing zebrafish peripheral axons reveals a requirement for extrinsic cell types. Neural Dev 7:19. https://doi.org/10.1186/1749-8104-7-19

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ceci ML, Mardones-Krsulovic C, Sánchez M, Valdivia LE, Allende ML (2014) Axon-Schwann cell interactions during peripheral nerve regeneration in zebrafish larvae. Neural Dev 9:22. https://doi.org/10.1186/1749-8104-9-22

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liang J, Wang D, Renaud G, Wolfsberg TG, Wilson AF, Burgess SM (2012) The stat3/socs3a pathway is a key regulator of hair cell regeneration in zebrafish stat3/socs3a pathway: regulator of hair cell regeneration. J Neurosci 32:10662–10673. https://doi.org/10.1523/JNEUROSCI.5785-10.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu Y, Sepich DS, Solnica-Krezel L (2017) Stat3/Cdc25a-dependent cell proliferation promotes embryonic axis extension during zebrafish gastrulation. PLoS Genet 13:e1006564. https://doi.org/10.1371/journal.pgen.1006564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Obholzer N, Wolfson S, Trapani JG, Mo W, Nechiporuk A, Busch-Nentwich E, Seiler C, Sidi S et al  (2008) Vesicular glutamate transporter 3 is required for synaptic transmission in zebrafish hair cells. J Neurosci 28:2110–2118. https://doi.org/10.1523/JNEUROSCI.5230-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jung SH, Kim S, Chung AY, Kim HT, So JH, Ryu J, Park HC, Kim CH (2010) Visualization of myelination in GFP-transgenic zebrafish. Dev Dyn 239:592–597. https://doi.org/10.1002/dvdy.22166

    Article  CAS  PubMed  Google Scholar 

  25. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310. https://doi.org/10.1002/aja.1002030302

    Article  CAS  PubMed  Google Scholar 

  26. Varshney GK, Carrington B, Pei W, Bishop K, Chen Z, Fan C, Xu L, Jones M et al.  (2016) A high-throughput functional genomics workflow based on CRISPR/Cas9-mediated targeted mutagenesis in zebrafish. Nat Protoc 11:2357–2375. https://doi.org/10.1038/nprot.2016.141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. LaFave MC, Varshney GK, Vemulapalli M, Mullikin JC, Burgess SM (2014) A defined zebrafish line for high-throughput genetics and genomics: NHGRI-1. Genetics 198:167–170. https://doi.org/10.1534/genetics.114.166769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Carrington B, Varshney GK, Burgess SM, Sood R (2015) CRISPR-STAT: an easy and reliable PCR-based method to evaluate target-specific sgRNA activity. Nucleic Acids Res 43:e157. https://doi.org/10.1093/nar/gkv802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McCurley AT, Callard GV (2008) Characterization of housekeeping genes in zebrafish: male-female differences and effects of tissue type, developmental stage and chemical treatment. BMC Mol Biol 9:102. https://doi.org/10.1186/1471-2199-9-102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Faucherre A, Pujol-Martí J, Kawakami K, López-Schier H (2009) Afferent neurons of the zebrafish lateral line are strict selectors of hair-cell orientation. PLoS One 4:e4477. https://doi.org/10.1371/journal.pone.0004477

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Drerup CM, Nechiporuk AV (2013) JNK-interacting protein 3 mediates the retrograde transport of activated c-Jun N-terminal kinase and lysosomes. PLoS Genet 9:e1003303. https://doi.org/10.1371/journal.pgen.1003303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brogna S, Wen J (2009) Nonsense-mediated mRNA decay (NMD) mechanisms. Nat Struct Mol Biol 16(2):107–113. https://doi.org/10.1038/nsmb.1550

    Article  CAS  PubMed  Google Scholar 

  33. Martin NR, Plavicki JS (2020) Advancing zebrafish as a model for studying developmental neurotoxicology. J Neurosci Res 98(6):981–983. https://doi.org/10.1002/jnr.24621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Devine CA, Key B (2003) Identifying axon guidance defects in the embryonic zebrafish brain. Methods Cell Sci 25(1–2):33–37. https://doi.org/10.1023/B:MICS.0000006851.84998.e0

    Article  CAS  PubMed  Google Scholar 

  35. Conway G (2006) STAT3-dependent pathfinding and control of axonal branching and target selection. Dev Biol 296:119–136. https://doi.org/10.1016/j.ydbio.2006.04.444

    Article  CAS  PubMed  Google Scholar 

  36. Raphael AR, Perlin JR, Talbot WS (2010) Schwann cells reposition a peripheral nerve to isolate it from postembryonic remodeling of its targets. Development 137(21):3643–3649. https://doi.org/10.1242/dev.057521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schust J, Sperl B, Hollis A, Mayer TU, Berg T (2006) Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem Biol 13:1235–1242. https://doi.org/10.1016/j.chembiol.2006.09.018

    Article  CAS  PubMed  Google Scholar 

  38. Pedranzini L, Dechow T, Berishaj M, Comenzo R, Zhou P, Azare J, Bornmann W, Bromberg J (2006) Pyridone 6, a pan-Janus-activated kinase inhibitor, induces growth inhibition of multiple myeloma cells. Cancer Res 66:9714–9721. https://doi.org/10.1158/0008-5472.CAN-05-4280

    Article  CAS  PubMed  Google Scholar 

  39. Siddiquee K, Zhang S, Guida WC, Blaskovich MA, Greedy B, Lawrence HR, Yip ML, Jove R et al.  (2007) Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc Natl Acad Sci U S A 104:7391–7396. https://doi.org/10.1073/pnas.0609757104

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Potts KS, Cameron RC, Metidji A, Ghazale N, Wallace L, Leal-Cervantes AI, Palumbo R, Barajas JM et al. (2022) Splicing factor deficits render hematopoietic stem and progenitor cells sensitive to STAT3 inhibition. Cell Rep 41(11):111825. https://doi.org/10.1016/j.celrep.2022.111825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Selvaraj BT, Frank N, Bender FLP, Asan E, Sendtner M (2012) Local axonal function of STAT3 rescues axon degeneration in the pmn model of motoneuron disease. J Cell Biol 199:437–451. https://doi.org/10.1083/jcb.201203109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mandal A, Pinter K, Drerup CM (2018) Analyzing neuronal mitochondria in vivo using fluorescent reporters in zebrafish. Front Cell Dev Biol 6:144. https://doi.org/10.3389/fcell.2018.00144

    Article  PubMed  PubMed Central  Google Scholar 

  43. Takeda K, Noguchi K, Shi W, Tanaka T, Matsumoto M, Yoshida N, Kishimoto T, Akira S (1997) Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci U S A 94:3801–3804. https://doi.org/10.1073/pnas.94.8.3801

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rossi A, Kontarakis Z, Gerri C, Nolte H, Hölper S, Krüger M, Stainier DY (2015) Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524:230–233. https://doi.org/10.1038/nature14580

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Wingelhofer B, Neubauer HA, Valent P, Han X, Constantinescu SN, Gunning PT, Müller M, Moriggl R (2018) Implications of STAT3 and STAT5 signaling on gene regulation and chromatin remodeling in hematopoietic cancer. Leukemia 32:1713–1726. https://doi.org/10.1038/s41375-018-0117-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li J, Li W, Calhoun HC, Xia F, Gao F-B, Li WX (2003) Patterns and functions of STAT activation during Drosophila embryogenesis. Mech Dev 120:1455–1468. https://doi.org/10.1016/j.mod.2003.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Freeman AF, Collura-Burke CJ, Patronas NJ, Ilcus LS, Darnell D, Davis J et al (2007) Brain abnormalities in patients with hyperimmunoglobulin E syndrome. Pediatrics 19(5):e1 121-125. https://doi.org/10.1542/peds.2006-2649

    Article  Google Scholar 

  48. Su Y, Huang X, Huang Z, Huang T, Xu Y, Yi C (2020) STAT3 localizes in mitochondria-associated ER membranes instead of in mitochondria. Front Cell Dev Biol 8:274. https://doi.org/10.3389/fcell.2020.00274

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  49. Peron M, Dinarello A, Meneghetti G, Martorano L, Betto RM, Facchinello N, Tesoriere A, Tiso N et al (2021) Y705 and S727 are required for the mitochondrial import and transcriptional activities of STAT3, and for regulation of stem cell proliferation. Development 148:dev199477. https://doi.org/10.1242/dev.199477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306. https://doi.org/10.1038/81834

    Article  CAS  PubMed  Google Scholar 

  51. Horvath CM, Wen Z, Darnell JE (1995) A STAT protein domain that determines DNA sequence recognition suggests a novel DNA-binding domain. Genes Dev 9:984–994. https://doi.org/10.1101/gad.9.8.984

    Article  CAS  PubMed  Google Scholar 

  52. Fang Y, Gupta V, Karra R, Holdway JE, Kikuchi K, Poss KD (2013) Translational profiling of cardiomyocytes identifies an early Jak1/Stat3 injury response required for zebrafish heart regeneration. Proc Natl Acad Sci U S A 110:13416–13421. https://doi.org/10.1073/pnas.1309810110

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  53. Zhang X, He B, Li H, Wang Y, Zhou Y, Wang W, Song T, Du N et al. (2020) SOCS3 attenuates GM-CSF/IFN-γ-mediated inflammation during spontaneous spinal cord regeneration. Neurosci Bull 36:778–792. https://doi.org/10.1007/s12264-020-00493-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Coleman MP, Freeman MR (2010) Wallerian degeneration, wld(s), and nmnat. Annu Rev Neurosci 33:245–267. https://doi.org/10.1146/annurev-neuro-060909-153248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu RY, Snider WD (2001) Different signaling pathways mediate regenerative versus developmental sensory axon growth. J Neurosci 21:RC164. https://doi.org/10.1523/JNEUROSCI.21-17-j0003.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Donghua Zhou, Yuanhang Chen, and Xujing Zhu, who participated in this study for their technical assistance and helpful discussions.

Funding

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant 31772406 to C.F. and Grant 31702329 to J.W.).

Author information

Authors and Affiliations

Authors

Contributions

Qinwen Duan, Hongfei Zheng, and Chunxin Fan designed the study. Material preparation and data collection were performed by Qinwen Duan, Hongfei Zheng, and Yanjun Qin. Data analysis was performed by Qinwen Duan, Jian Wang, and Chunxin Fan. The first draft of the manuscript was written by Qinwen Duan and Chunxin Fan and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chunxin Fan.

Ethics declarations

Ethics Approval

The study was approved by the Animal Ethics Committee of Shanghai Ocean University (Approval Number: SHOU-DW-2021-051). All animal experiments were performed in accordance with a guide to animal ethics.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (AVI 8885 KB)

Supplementary file2 (AVI 9547 KB)

Supplementary file3 (AVI 135528 KB)

Supplementary file4 (DOCX 11038 KB)

Supplementary file5 (XLSX 40 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Q., Zheng, H., Qin, Y. et al. Stat3 Has a Different Role in Axon Growth During Development Than It Does in Axon Regeneration After Injury. Mol Neurobiol 61, 1753–1768 (2024). https://doi.org/10.1007/s12035-023-03644-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03644-w

Keywords

Navigation