Skip to main content
Log in

Persistent mitochondrial dysfunction and oxidative stress hinder neuronal cell recovery from reversible proteasome inhibition

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Oxidative stress, proteasome impairment and mitochondrial dysfunction are implicated as contributors to ageing and neurodegeneration. Using mouse neuronal cells, we showed previously that the reversible proteasome inhibitor, [N-benzyloxycarbonyl-Ile-Glu (O-t-bytul)-Ala-leucinal; (PSI)] induced excessive reactive oxygen species (ROS) that mediated mitochondrial damage and a caspase-independent cell death. Herein, we examined whether this insult persists in neuronal cells recovering from inhibitor removal over time. Recovery from proteasome inhibition showed a time and dose-dependent cell death that was accompanied by ROS overproduction, caspase activation and mitochondrial membrane permeabilization with the subcellular relocalizations of the proapoptotic proteins, Bax, cytochrome c and the apoptosis inducing factor (AIF). Caspase inhibition failed to promote survival indicating that cell death was caspase-independent. Treatments with the antioxidant N-acetyl-cysteine (NAC) were needed to promote survival in cell recovering from mild proteasome inhibition while overexpression of the antiapoptotic protein Bcl-xL together with NAC attenuated cell death during recovery from potent inhibition. Whereas inhibitor removal increased proteasome function, cells recovering from potent proteasome inhibition showed excessive levels of ubiquitinated proteins that required the presence of NAC for their removal. Collectively, these results suggest that the oxidative stress and mitochondrial inhibition induced by proteasome inhibition persists to influence neuronal cell survival when proteasome function is restored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

PSI:

N-Benzyloxycarbonyl-Ile-Glu (O-t-butyl)-Ala-leucinal

AIF:

Apoptosis inducing factor

ROS:

Reactive oxygen species

NAC:

N-acetyl-cysteine

References

  1. Emerit J, Edeas M, Bricaire F (2004) Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 58:39–46

    Article  PubMed  CAS  Google Scholar 

  2. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  PubMed  CAS  Google Scholar 

  3. Sas K, Robotka H, Toldi J, Vecsei L (2007) Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci 257:221–239

    Article  PubMed  CAS  Google Scholar 

  4. Mattson MP (2006) Neuronal life-and-death signaling, apoptosis, and neurodegenerative disorders. Antioxid Redox Signal 8:1997–2006

    Article  PubMed  CAS  Google Scholar 

  5. Swerdlow RH (2007) Treating neurodegeneration by modifying mitochondria:potential solutions to a “complex” problem. Antioxid Redox Signal 9:1591–1604

    Article  PubMed  CAS  Google Scholar 

  6. Layfield R, Lowe J, Bedford L (2005) The ubiquitin-proteasome system and neurodegenerative disorders. Essays Biochem 41:157–171

    PubMed  CAS  Google Scholar 

  7. Ding Q, Dimayuga E, Keller JN (2006) Proteasome regulation of oxidative stress in aging and age-related diseases of the CNS. Antioxid Redox Signal 8:163–172

    Article  PubMed  CAS  Google Scholar 

  8. Halliwell B (2006) Proteasomal dysfunction: a common feature of neurodegenerative diseases? Implications for the environmental origins of neurodegeneration. Antioxid Redox Signal 8:2007–2019

    Article  PubMed  CAS  Google Scholar 

  9. Miller CP, Ban K, Dujka ME et al (2007) NPI-0052, a novel proteasome inhibitor, induces caspase-8 and ROS-dependent apoptosis alone and in combination with HDAC inhibitors in leukemia cells. Blood 110:267–277

    Article  PubMed  CAS  Google Scholar 

  10. Demasi M, Davies KJ (2003) Proteasome inhibitors induce intracellular protein aggregation and cell death by an oxygen-dependent mechanism. FEBS Lett 542:89–94

    Article  PubMed  CAS  Google Scholar 

  11. Kikuchi S, Shinpo K, Tsuji S et al (2003) Effect of proteasome inhibitor on cultured mesencephalic dopaminergic neurons. Brain Res 964:228–236

    Article  PubMed  CAS  Google Scholar 

  12. Lang-Rollin I, Vekrellis K, Wang Q, Rideout HJ, Stefanis L (2004) Application of proteasomal inhibitors to mouse sympathetic neurons activates the intrinsic apoptotic pathway. J Neurochem 90:1511–1520

    Article  PubMed  CAS  Google Scholar 

  13. Lee CS, Han ES, Park ES, Bang H (2005) Inhibition of MG132-induced mitochondrial dysfunction and cell death in PC12 cells by 3-morpholinosydnonimine. Brain Res 1036:18–26

    Article  PubMed  CAS  Google Scholar 

  14. Goldbaum O, Vollmer G, Richter-Landsberg C (2006) Proteasome inhibition by MG-132 induces apoptotic cell death and mitochondrial dysfunction in cultured rat brain oligodendrocytes but not in astrocytes. Glia 53:891–901

    Article  PubMed  Google Scholar 

  15. Beretta S, Sala G, Mattavelli L et al (2003) Mitochondrial dysfunction due to mutant copper/zinc superoxide dismutase associated with amyotrophic lateral sclerosis is reversed by N-acetylcysteine. Neurobiol Dis 13:213–221

    Article  PubMed  CAS  Google Scholar 

  16. Yu C, Rahmani M, Dent P, Grant S (2004) The hierarchical relationship between MAPK signaling and ROS generation in human leukemia cells undergoing apoptosis in response to the proteasome inhibitor Bortezomib. Exp Cell Res 295:555–566

    Article  PubMed  CAS  Google Scholar 

  17. Papa L, Gomes E, Rockwell P (2007) Reactive oxygen species induced by proteasome inhibition in neuronal cells mediate mitochondrial dysfunction and a caspase-independent cell death. Apoptosis 12:1389–1405

    Article  PubMed  CAS  Google Scholar 

  18. Rockwell P, Martinez J, Papa L, Gomes E (2004) Redox regulates COX-2 upregulation and cell death in the neuronal response to cadmium. Cell Signal 16:343–353

    Article  PubMed  CAS  Google Scholar 

  19. Scaduto RC Jr, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76:469–477

    Article  PubMed  CAS  Google Scholar 

  20. Galluzzi L, Zamzami N, de La Motte Rouge T, Lemaire C, Brenner C, Kroemer G (2007) Methods for the assessment of mitochondrial membrane permeabilization in apoptosis. Apoptosis 12:803–813

    Article  PubMed  CAS  Google Scholar 

  21. Ostrowska H, Wojcik C, Wilk S et al (2000) Separation of cathepsin A-like enzyme and the proteasome: evidence that lactacystin/beta-lactone is not a specific inhibitor of the proteasome. Int J Biochem Cell Biol 32:747–757

    Article  PubMed  CAS  Google Scholar 

  22. Ding Q, Dimayuga E, Markesbery WR, Keller JN (2006) Proteasome inhibition induces reversible impairments in protein synthesis. FASEB J 20:1055–1063

    Article  PubMed  CAS  Google Scholar 

  23. Calabrese V, Guagliano E, Sapienza M, Mancuso C, Butterfield DA, Stella AM (2006) Redox regulation of cellular stress response in neurodegenerative disorders. Ital J Biochem 55:263–282

    PubMed  CAS  Google Scholar 

  24. Parihar MS, Brewer GJ (2007) Simultaneous age-related depolarization of mitochondrial membrane potential and increased mitochondrial reactive oxygen species production correlate with age-related glutamate excitotoxicity in rat hippocampal neurons. J Neurosci Res 85:1018–1032

    Article  PubMed  CAS  Google Scholar 

  25. Buccellato LJ, Tso M, Akinci OI, Chandel NS, Budinger GR (2004) Reactive oxygen species are required for hyperoxia-induced Bax activation and cell death in alveolar epithelial cells. J Biol Chem 279:6753–6760

    Article  PubMed  CAS  Google Scholar 

  26. Okouchi M, Ekshyyan O, Maracine M, Aw TY (2007) Neuronal apoptosis in neurodegeneration. Antioxid Redox Signal 9:1059–1096

    Article  PubMed  CAS  Google Scholar 

  27. Madesh M, Hajnoczky G (2001) VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J Cell Biol 155:1003–1015

    Article  PubMed  CAS  Google Scholar 

  28. Le Bras M, Clement MV, Pervaiz S, Brenner C (2005) Reactive oxygen species and the mitochondrial signaling pathway of cell death. Histol Histopathol 20:205–219

    PubMed  CAS  Google Scholar 

  29. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  PubMed  CAS  Google Scholar 

  30. Kroemer G, Martin SJ (2005) Caspase-independent cell death. Nat Med 11:725–730

    Article  PubMed  CAS  Google Scholar 

  31. Stefanis L (2005) Caspase-dependent and -independent neuronal death: two distinct pathways to neuronal injury. Neuroscientist 11:50–62

    Article  PubMed  CAS  Google Scholar 

  32. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656

    Article  PubMed  CAS  Google Scholar 

  33. Vander Heiden MG, Li XX, Gottleib E, Hill RB, Thompson CB, Colombini M (2001) Bcl-xL promotes the open configuration of the voltage-dependent anion channel and metabolite passage through the outer mitochondrial membrane. J Biol Chem 276:19414–19419

    Article  PubMed  CAS  Google Scholar 

  34. Kroemer G (1999) Mitochondrial control of apoptosis: an overview. Biochem Soc Symp 66:1–15

    PubMed  CAS  Google Scholar 

  35. Marzo I, Brenner C, Zamzami N et al (1998) Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281:2027–2031

    Article  PubMed  CAS  Google Scholar 

  36. Shimizu S, Konishi A, Kodama T, Tsujimoto Y (2000) BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc Natl Acad Sci USA 97:3100–3105

    Article  PubMed  CAS  Google Scholar 

  37. Putcha GV, Deshmukh M, Johnson EM Jr (1999) BAX translocation is a critical event in neuronal apoptosis: regulation by neuroprotectants, BCL-2, and caspases. J Neurosci 19:7476–7485

    PubMed  CAS  Google Scholar 

  38. Arnoult D, Gaume B, Karbowski M, Sharpe JC, Cecconi F, Youle RJ (2003) Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. Embo J 22:4385–4399

    Article  PubMed  CAS  Google Scholar 

  39. Kirkland RA, Franklin JL (2001) Evidence for redox regulation of cytochrome C release during programmed neuronal death: antioxidant effects of protein synthesis and caspase inhibition. J Neurosci 21:1949–1963

    PubMed  CAS  Google Scholar 

  40. Cregan SP, Fortin A, MacLaurin JG et al (2002) Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death. J Cell Biol 158:507–517

    Article  PubMed  CAS  Google Scholar 

  41. Layfield R, Cavey JR, Lowe J (2003) Role of ubiquitin-mediated proteolysis in the pathogenesis of neurodegenerative disorders. Age Res Rev 2:343–356

    Article  CAS  Google Scholar 

  42. Grune T, Jung T, Merker K, Davies KJ (2004) Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease. Int J Biochem Cell Biol 36:2519–2530

    Article  PubMed  CAS  Google Scholar 

  43. Davies KJ (2001) Degradation of oxidized proteins by the 20S proteasome. Biochimie 83:301–310

    Article  PubMed  CAS  Google Scholar 

  44. Dimakopoulos AC (2005) Protein aggregation in Alzheimer’s disease and other neuropathological disorders. Curr Alzheimer Res 2:19–28

    Article  PubMed  CAS  Google Scholar 

  45. Shringarpure R, Grune T, Mehlhase J, Davies KJ (2003) Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome. J Biol Chem 278:311–318

    Article  PubMed  CAS  Google Scholar 

  46. Keller JN, Gee J, Ding Q (2002) The proteasome in brain aging. Age Res Rev 1:279–293

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by The National Institutes of Health Grant (NIGMS SCORE to P.R.) and Grant Number RR03037 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of NCRR or NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Rockwell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PPT 6115 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papa, L., Rockwell, P. Persistent mitochondrial dysfunction and oxidative stress hinder neuronal cell recovery from reversible proteasome inhibition. Apoptosis 13, 588–599 (2008). https://doi.org/10.1007/s10495-008-0182-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-008-0182-0

Keywords

Navigation