Skip to main content
Log in

Reactive oxygen species induced by proteasome inhibition in neuronal cells mediate mitochondrial dysfunction and a caspase-independent cell death

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

While increasing evidence shows that proteasome inhibition triggers oxidative damage, mitochondrial dysfunction and death in neuronal cells, the regulatory relationship among these events is unclear. Using mouse neuronal cells we show that the cytotoxicity induced by mild (0.25 μM) and potent (5.0 μM) doses of the proteasome inhibitor, N-Benzyloxycarbonyl-Ile-Glu (O-t-butyl)-Ala-leucinal, (PSI) involved a dose-dependent increase in caspase activation, overproduction of reactive oxygen species (ROS) and a mitochondrial dysfunction manifested by the translocation of the proapoptotic protein, Bax, from the cytoplasm to the mitochondria, membrane depolarization and the release of cytochrome c and the apoptosis inducing factor (AIF) from mitochondria to the cytoplasm and nucleus, respectively. Whereas caspase or Bax inhibition failed to prevent mitochondrial membrane depolarization and neuronal cell death, pretreatments with the antioxidant N-acetyl-l-cysteine (NAC) or overexpression of the antiapoptotic protein Bcl-xL abrogated these events in cells exposed to mild levels of PSI. These findings implicated ROS as a mediator of PSI-induced cytotoxicity. However, depletions in glutathione and Bcl-xL with potent proteasome inhibition exacerbated this response whereupon survival required the cooperative protection of NAC with Bcl-xL overexpression. Collectively, ROS induced by proteasome inhibition mediates a mitochondrial dysfunction in neuronal cells that culminates in death through caspase- and Bax-independent mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

PSI:

N-Benzyloxycarbonyl-Ile-Glu (O-t-butyl)-Ala-leucinal

AIF:

Apoptosis inducing factor

ROS:

Reactive oxygen species

NAC:

N-acetyl-cysteine

GSH:

Glutathione

References

  1. Layfield R, Cavey JR, Lowe J (2003) Role of ubiquitin-mediated proteolysis in the pathogenesis of neurodegenerative disorders. Ageing Res Rev 2:343–346

    Article  PubMed  CAS  Google Scholar 

  2. Beal MF (2005) Mitochondria take center stage in aging and neurodegeneration. Ann Neurol 58:495–505

    Article  PubMed  CAS  Google Scholar 

  3. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  PubMed  CAS  Google Scholar 

  4. Grune T, Jung T, Merker K, Davies KJ (2004) Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease. Int J Biochem Cell Biol 36:2519–2530

    Article  PubMed  CAS  Google Scholar 

  5. Keller JN, Gee J, Ding Q (2002) The proteasome in brain aging. Ageing Res Rev 1:279–293

    Article  PubMed  CAS  Google Scholar 

  6. Ling Y-H, Liebes L, Zou Y, Perez-Soler R (2003) Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung. J Biol Chem 278:33714–33723

    Article  PubMed  CAS  Google Scholar 

  7. Kikuchi S, Shinpo K, Tsuji S, Takeuchi M, Yamagishi S, Makita Z, Niino M, Yabe I, Tashiro K (2003) Effect of proteasome inhibitor on cultured mesencephalic dopaminergic neurons. Brain Res 964:228–236

    Article  PubMed  CAS  Google Scholar 

  8. Qiu JH, Asai A, Chi S, Saito N, Hamada H et al (2000) Proteasome inhibitors induce cytochrome c-caspase-3-like protease-mediated apoptosis in cultured cortical neurons. J Neurochem 20:259–265

    CAS  Google Scholar 

  9. Pasquini LA, Besio Moreno M, Adamo AM, Pasquini JM, Soto EF (2000) Lactacystin, a specific inhibitor of the proteasome, induces apoptosis and activates caspase-3 in cultured cerebellar granule cells. J Neurosci Res 59:601–611

    Article  PubMed  CAS  Google Scholar 

  10. Sullivan PG, Dragicevic NB, Deng J-H, Bai Y, Dimayuga E, Ding Q et al (2004) Proteasome inhibition alters neural mitochondrial homeostasis and mitochondria turnover. J Biol Chem 279:20699–20707

    Article  PubMed  CAS  Google Scholar 

  11. Lang-Rollin IC, Vekrellis K, Wang Q, Rideout HJ, Stefanis L (2004) Mechanisms of caspase-independent neuronal death: energy depletion and free radical generation. J Neurochem 90:1511–1520

    Article  PubMed  CAS  Google Scholar 

  12. Lang-Rollin IC, Maniati M, Jabado O, Vekrellis K, Papantonis S, Rideout HJ et al (2005) Apoptosis and the conformational change of Bax induced by proteasomal inhibition of PC12 cells are inhibited by bcl-xL and bcl-2. Apoptosis 10:809–820

    Article  PubMed  CAS  Google Scholar 

  13. Lee CS, Han ES, Park ES, Bang H (2005) Inhibition of MG132-induced mitochondrial dysfunction and cell death in PC12 cells by 3-morpholinosydnonimine. Brain Res 1036:18–26

    Article  PubMed  CAS  Google Scholar 

  14. McNaught KS, Perl DP, Brownell AL, Olanow CW (2004) Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease. Ann Neurol 56:149–162

    Article  PubMed  CAS  Google Scholar 

  15. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2: 647–656

    Article  PubMed  CAS  Google Scholar 

  16. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  PubMed  CAS  Google Scholar 

  17. Scorrano L, Stanley JK (2003) Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem Biophys Res Commun 304:437–444

    Article  PubMed  CAS  Google Scholar 

  18. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    Article  PubMed  CAS  Google Scholar 

  19. Cregan SP, Fortin A, MacLaurin JG, Callaghan SM, Cecconi F, Yu SW et al (2002) Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death. J Cell Biol 158:507–517

    Article  PubMed  CAS  Google Scholar 

  20. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ et al (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 27:727–730

    Article  Google Scholar 

  21. Cheung EC, Melanson-Drapeau L, Cregan SP, Vanderluit JL, Ferguson KL, McIntosh WC et al (2005) Apoptosis-inducing factor is a key factor in neuronal cell death propagated by BAX-dependent and BAX-independent mechanisms. J Neurosci 25:1324–1334

    Article  PubMed  CAS  Google Scholar 

  22. Cheng EH, Wei MC, Weiler S, Flavell TA, Mak TW, Lindsten T et al (2001) Bcl-2, Bcl-xL sequester BH3 domain-only molecules preventing Bax- and Bak mediated mitochondrial apoptosis. Mol Cell 8:705–711

    Article  PubMed  CAS  Google Scholar 

  23. Zhang HG, Wang J, Yang X, Hsu HC, Mountz JD (2004) Regulation of apoptosis proteins in cancer cells by ubiquitin. Oncogene 23:2009–2015

    Article  PubMed  CAS  Google Scholar 

  24. Perez-Galan P, Roue G, Villamor N, Montserrat E, Campo E, Colomer D (2006) The proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through generation of ROS and Noxa activation independent of p53 status. Blood 107:257–264

    Article  PubMed  CAS  Google Scholar 

  25. Zheng Y, Yamaguchi H, Tian C, Lee MW, Tang H, Wang HG et al (2005) Arsenic trioxide (As(2)O(3)) induces apoptosis through activation of Bax in hematopoietic cells. Oncogene 24: 3339–3347

    Article  PubMed  CAS  Google Scholar 

  26. Kirkland RA, Windelborn JA, Kasprzak JM, Franklin JL (2002) A Bax-induced pro-oxidant state is critical for cytochrome c release during programmed neuronal death. J Neurosci 22:6480–6490

    PubMed  CAS  Google Scholar 

  27. Buccellato LJ, Tso M, Akinci OI, Chandel NS, Budinger GR (2004) Reactive oxygen species are required for hyperoxia-induced Bax activation and cell death in alveolar epithelial cells. J Biol Chem 279:6753–6760

    Article  PubMed  CAS  Google Scholar 

  28. Herrera B, Alvarez AM, Sanchez A, Fernandez M, Roncero C, Benito M et al (2001) Reactive oxygen species (ROS) mediates the mitochondrial-dependent apoptosis induced by transforming growth factor (beta) in fetal hepatocytes. FASEB J 15:741–751

    Article  PubMed  CAS  Google Scholar 

  29. Fernandez-Gomez FJ, Galindo MF, Gomez-Lazaro M, Yuste VJ, Comella JX, Aguirre N et al (2005) Malonate induces cell death via mitochondrial potential collapse and delayed swelling through an ROS-dependent pathway. Br J Pharma 144:528–537

    Article  CAS  Google Scholar 

  30. Singh SV, Srivastava SK, Choi S, Lew KL, Antosiewicz J, Xiao D et al (2005) Herman-Antosiewicz a sulforaphane-induced cell death in human prostate cancer cells is initiated by reactive oxygen species. J Biol Chem 280:19911–19924

    Article  PubMed  CAS  Google Scholar 

  31. Vander Heiden MG, Li XX, Gottleib E, Hill RB, Thompson CB, Colombini M (2001) Bcl-xL promotes the open configuration of the voltage-dependent anion channel and metabolite passage through the outer mitochondrial membrane. J Biol Chem 276:19414–19419

    Article  PubMed  CAS  Google Scholar 

  32. Pei XY, Dai Y, Grant S (2003) The proteasome inhibitor bortezomib promotes mitochondrial injury and apoptosis induced by the small molecule Bcl-2 inhibitor HA14-1 in multiple myeloma cells. Leukemia 17:2036–2045

    Article  PubMed  CAS  Google Scholar 

  33. Ricci JE, Gottlieb RA, Green DR (2003) Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis. J Cell Bio 160:65–75

    Article  CAS  Google Scholar 

  34. Rockwell P, Yuan H, Magnusson R, Figueiredo-Pereira M (2000) Proteasome inhibition in neuronal cells induces a proinflammatory response manifested by upregulation of cyclooxygenase-2, its accumulation as ubiquitin conjugates, and production of the prostaglandin PGE(2). Arch Biochem Biophys 374:325–333

    Article  PubMed  CAS  Google Scholar 

  35. Rockwell P, Martinez J, Papa L, Gomes E (2004) Redox regulates COX-2 upregulation and cell death in the neuronal response to cadmium. Cell Signal 16:343–353

    Article  PubMed  CAS  Google Scholar 

  36. Rukenstein A, Rydel RE, Greene LA (1991) Multiple agents rescue PC12 cells from serum-free cell death by translation- and transcription independent mechanisms. J Neurosci 11:2552–2563

    PubMed  CAS  Google Scholar 

  37. Yoshida T, Tomioka I, Nagahara T, Holyst T, Sawada M, Hayes P, et al (2004) Bax-inhibiting peptide derived from mouse and rat Ku70. Biochem Biophys Res Commun 321:961–966

    Article  PubMed  CAS  Google Scholar 

  38. Stefanis L (2005) Caspase-dependent and -independent neuronal death: two distinct pathways to neuronal injury. Neuroscientist 11:50–62

    Article  PubMed  CAS  Google Scholar 

  39. Russell C, Scaduto Jr, Lee W (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophysical J 76:469–477

    Article  Google Scholar 

  40. Fuchs SY, Fried V, Ronai Z (1998) Stress-activated kinases regulate protein stability. Oncogene 17:1483–1490

    Article  PubMed  CAS  Google Scholar 

  41. Chen J, Tang XQ, Zhi Y, Cui HM, Yu EH, Tang SN et al (2006) Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway. Apoptosis 11:943–953

    Article  PubMed  CAS  Google Scholar 

  42. Abramov AY, Canevari L, Duchen MR (2004) Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci 24:565–575

    Article  PubMed  CAS  Google Scholar 

  43. Yamaguchi H, Wang HG (2002) Bcl-XL protects BimEL-induced Bax conformational change and cytochrome c release independent of interacting with Bax or BimEL. J Biol Chem 277:41604–41612

    Article  PubMed  CAS  Google Scholar 

  44. Zheng Y, Yamaguchi H, Tian C, Lee MW, Tang H, Wang HG et al (2005) Arsenic trioxide (As(2)O(3)) induces apoptosis through activation of Bax in hematopoietic cells. Oncogene 24:3339–3347

    Article  PubMed  CAS  Google Scholar 

  45. Chang LK, Schmidt RE, Johnson EM Jr (2003) Alternating metabolic pathways in NGF-deprived sympathetic neurons affect caspase-independent death. J Cell Biol 162:245–256

    Article  PubMed  CAS  Google Scholar 

  46. Gottlieb E, Vander Heiden MG, Thompson CB (2000) Bcl-x(L) prevents the initial decrease in mitochondrial membrane potential, subsequent reactive oxygen species production during tumor necrosis factor alpha-induced apoptosis. Mol Cell Biol 20:5680–689

    Article  PubMed  CAS  Google Scholar 

  47. Chen Q, Chai YC, Mazumder S, Jiang C, Macklis RM, Chisolm GM et al (2003) The late increase in intracellular free radical oxygen species during apoptosis is associated with cytochrome c release, caspase activation, and mitochondrial dysfunction. Cell Death Differ 10:323–334

    Article  PubMed  CAS  Google Scholar 

  48. Yu C, Rahmani M, Dent P, Grant S (2004) The hierarchical relationship between MAPK signaling and ROS generation in human leukemia cells undergoing apoptosis in response to the proteasome inhibitor Bortezomib. Exp Cell Res 295:555–566

    Article  PubMed  CAS  Google Scholar 

  49. Dewson G, Snowden RT, Almond JB, Dyer MJ, Cohen GM (2003) Conformational change and mitochondrial translocation of Bax accompany proteasome inhibitor-induced apoptosis of chronic lymphocytic leukemic cells. Oncogene 22:2643–2654

    Article  PubMed  CAS  Google Scholar 

  50. Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR et al (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17:525–535

    Article  PubMed  CAS  Google Scholar 

  51. Meller R, Cameron JA, Torrey DJ, Clayton CE, Ordonez AN, Henshall DC et al (2006) Rapid degradation of Bim by the ubiquitin-proteasome pathway mediates short-term ischemic tolerance in cultured neurons. J Bio Chem 281:7429–7436

    Article  CAS  Google Scholar 

  52. Putcha GV, Deshmukh M, Johnson EM Jr (1999) BAX translocation is a critical event in neuronal apoptosis: regulation by neuroprotectants, BCL-2, and caspases. J Neurosci 19:7476–7485

    PubMed  CAS  Google Scholar 

  53. Madesh M, Hajnoczky GJ (2001) VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J Cell Biol 155:1003–1015

    Article  PubMed  CAS  Google Scholar 

  54. Le Bras M, Clement MV, Pervaizm S, Brenner C (2005) Reactive oxygen species and the mitochondrial signaling pathway of cell death. Histo Histopathol 20:205–219

    CAS  Google Scholar 

  55. Kruman I, Guo Q, Mattson MP (1998) Calcium and reactive oxygen species mediate staurosporine-induced mitochondrial dysfunction and apoptosis in PC12 cells. J Neurosci Res 51:293–308

    Article  PubMed  CAS  Google Scholar 

  56. Krohn AJ, Wahlbrink T, Prehn JHM (1999) Mitochondrial depolarization is not required for neuronal apoptosis. J Neurosci 19:7394–404

    PubMed  CAS  Google Scholar 

  57. Arnoult D, Gaume B, Karbowski M, Sharpe JC, Cecconi F, Youle RJ (2003) Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO 17:4385–99

    Article  Google Scholar 

  58. Kang YH, Yi MJ, Kim MJ, Park MT, Bae S, Kang CM et al (2004) Caspase-independent cell death by arsenic trioxide in human cervical cancer cells: reactive oxygen species-mediated poly(ADP-ribose) polymerase-1 activation signals apoptosis-inducing factor release from mitochondria. Cancer Res 64:8960–7

    Article  PubMed  CAS  Google Scholar 

  59. Sang C, Kobayashi Y, Du J, Katsumo M, Adachi H, Doyu M et al (2002) c-Jun N-terminal kinase pathway mediates Lactacystin-induced cell death in a neuronal differentiated Neuro2a cell line. Brain Res Mol Brain Res 108:7–17

    Article  PubMed  CAS  Google Scholar 

  60. Okouchi M, Okayama N, Tak YA (2005) A differential susceptibility of naive and differentiated PC-12 cells to methylglyoxal-induced apoptosis: influence of cellular redox. Curr Neurovasc Res 2:13–22

    Article  PubMed  CAS  Google Scholar 

  61. Ding Q, Dimayuga E, Markesbery WR, Keller JN (2006) Proteasome inhibition induces reversible impairments in protein synthesis. FASEB J 20:1055–63

    Article  PubMed  CAS  Google Scholar 

  62. Ding Q, Dimayuga E, Keller JN (2006) Proteasome regulation of oxidative stress in aging and age-related diseases of the CNS. Antioxid Redox Signal 8:163–172

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by The National Institutes of Health Grant (NIGMS SCORE to P.R.) and Grant Number RR03037 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of NCRR or NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Rockwell.

Electronic supplementary material

Below is the link to the electronic supplementary material

10495_2007_69_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papa, L., Gomes, E. & Rockwell, P. Reactive oxygen species induced by proteasome inhibition in neuronal cells mediate mitochondrial dysfunction and a caspase-independent cell death. Apoptosis 12, 1389–1405 (2007). https://doi.org/10.1007/s10495-007-0069-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0069-5

Keywords

Navigation