Skip to main content
Log in

The effect of intracellular ascorbate on the susceptibility of HL60 and Jurkat cells to chemotherapy agents

  • Report
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Chemotherapy agents initiate tumour cell apoptosis and this is thought to involve oxidative stress. In this study we have investigated the effect of the important antioxidant Vitamin C (ascorbate) on the response of HL60 and Jurkat cells to three chemotherapy drugs, namely etoposide, melphalan and arsenic trioxide (As2O3). Cells grown in routine culture media are deficient in ascorbate and to determine its effect on chemotherapy drug-induced apoptosis we supplemented the cells prior to drug exposure. We found that ascorbate had a varied effect on apoptosis and cell cycle progression. Etoposide-induced apoptosis in HL60 cells was significantly increased in ascorbate-loaded cells as measured by caspase-3 activation and DNA degradation, and this appeared to reflect a decrease in the number of necrotic cells rather than increased cytotoxicity. In contrast, ascorbate had no effect on etoposide-induced apoptosis in Jurkat cells. In both cell types melphalan-induced apoptosis was unaffected by intracellular ascorbate, whereas both apoptosis and growth arrest with low concentrations of As2O3 were diminished. These results indicate that intracellular ascorbate can affect cell responses to chemotherapy drugs in a complex and somewhat unpredictable manner and that it may play an important role in the responsiveness of tumour cells to chemotherapy regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim R (2005) Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer 103:1551–1560

    Article  PubMed  CAS  Google Scholar 

  2. Conklin KA (2004) Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr Cancer Ther 3:294–300

    Article  PubMed  CAS  Google Scholar 

  3. Senturker S, Tschirret-Guth R, Morrow J, Levine R, Shacter E (2002) Induction of apoptosis by chemotherapeutic drugs without generation of reactive oxygen species. Arch Biochem Biophys 397:262–272

    Article  PubMed  Google Scholar 

  4. Sordet O, Khan QA, Kohn KW, Pommier Y (2003) Apoptosis induced by topoisomerase inhibitors. Curr Med Chem Anticancer Agents 3:271–290

    Article  PubMed  CAS  Google Scholar 

  5. Darzynkiewicz Z (1995) Apoptosis in antitumor strategies: modulation of cell cycle or differentiation. J Cell Biochem 58:151–159

    Article  PubMed  CAS  Google Scholar 

  6. Troyano A, Fernandez C, Sancho P, de Blas E, Aller P (2001) Effect of glutathione depletion on antitumor drug toxicity (apoptosis and necrosis) in U-937 human promonocytic cells. The role of intracellular oxidation. J Biol Chem 276:47107–47115

    Article  PubMed  CAS  Google Scholar 

  7. Engel RH, Evens AM (2006) Oxidative stress and apoptosis: a new treatment paradigm in cancer. Front Biosci 11:300–312

    PubMed  CAS  Google Scholar 

  8. Powis G, Mustacich D, Coon A (2000) The role of the redox protein thioredoxin in cell growth and cancer. Free Radic Biol Med 29:312–322

    Article  PubMed  CAS  Google Scholar 

  9. Meister A (1994) Glutathione, ascorbate, and cellular protection. Cancer Res 54:1969s–1975s

    PubMed  CAS  Google Scholar 

  10. Frei B, Stocker R, Ames BN (1988) Antioxidant defenses and lipid peroxidation in human blood plasma. Proc Natl Acad Sci USA 85:9748–9752

    Article  PubMed  CAS  Google Scholar 

  11. Banhegyi G, Braun L, Csala M, Puskas F, Mandl J (1997) Ascorbate metabolism and its regulation in animals. Free Radic Biol Med 23:793–803

    Article  PubMed  CAS  Google Scholar 

  12. Ogino T, Packer L, Maguire JJ (1997) Neutrophil antioxidant capacity during the respiratory burst: loss of glutathione induced by chloramines. Free Radic Biol Med 23:445–452

    Article  PubMed  CAS  Google Scholar 

  13. Lenton KJ, Therriault H, Fulop T, Payette H, Wagner JR (1999) Glutathione and ascorbate are negatively correlated with oxidative DNA damage in human lymphocytes. Carcinogenesis 20:607–613

    Article  PubMed  CAS  Google Scholar 

  14. Winterbourn CC, Vissers MC (1983) Changes in ascorbate levels on stimulation of human neutrophils. Biochim Biophys Acta 763:175–179

    Article  PubMed  CAS  Google Scholar 

  15. Ek A, Strom K, Cotgreave IA (1995) The uptake of ascorbic acid into human umbilical vein endothelial cells and its effect on oxidant insult. Biochem Pharmacol 50:1339–1346

    Article  PubMed  CAS  Google Scholar 

  16. Head KA (1998) Ascorbic acid in the prevention and treatment of cancer. Altern Med Rev 3:174–186

    PubMed  CAS  Google Scholar 

  17. De Loecker W, Janssens J, Bonte J, Taper HS (1993) Effects of sodium ascorbate (vitamin C) and 2-methyl-1,4-naphthoquinone (vitamin K3) treatment on human tumor cell growth in vitro. II. Synergism with combined chemotherapy action. Anticancer Res 13:103–106

    PubMed  CAS  Google Scholar 

  18. Amadori S, Fenaux P, Ludwig H, O’Dwyer M, Sanz M (2005) Use of arsenic trioxide in haematological malignancies: insight into the clinical development of a novel agent. Curr Med Res Opin 21:403–411

    Article  PubMed  CAS  Google Scholar 

  19. Han SS, Kim K, Hahm ER, et al (2004) L-ascorbic acid represses constitutive activation of NF-kappaB and COX-2 expression in human acute myeloid leukemia, HL-60. J Cell Biochem 93:257–270

    Article  PubMed  CAS  Google Scholar 

  20. Park S, Han SS, Park CH, et al (2004) L-Ascorbic acid induces apoptosis in acute myeloid leukemia cells via hydrogen peroxide-mediated mechanisms. Int J Biochem Cell Biol 36:2180–2195

    Article  PubMed  CAS  Google Scholar 

  21. Karasavvas N, Carcamo JM, Stratis G, Golde DW (2005) Vitamin C protects HL60 and U266 cells from arsenic toxicity. Blood 105:4004–4012

    Article  PubMed  CAS  Google Scholar 

  22. Sane AT, Cantin AM, Paquette B, Wagner JR (2004) Ascorbate modulation of H(2)O(2) and camptothecin-induced cell death in Jurkat cells. Cancer Chemother Pharmacol 54:315–321

    PubMed  CAS  Google Scholar 

  23. Verrax J, Cadrobbi J, Marques C, et al (2004) Ascorbate potentiates the cytotoxicity of menadione leading to an oxidative stress that kills cancer cells by a non-apoptotic caspase-3 independent form of cell death. Apoptosis 9:223–233

    Article  PubMed  CAS  Google Scholar 

  24. Gilloteaux J, Jamison JM, Lorimer HE, et al (2004) Autoschizis: a new form of cell death for human ovarian carcinoma cells following ascorbate: menadione treatment. Nuclear and DNA degradation. Tissue Cell 36:197–209

    Article  PubMed  CAS  Google Scholar 

  25. Gilloteaux J, Jamison JM, Arnold D, Taper HS, Summers JL (2001) Ultrastructural aspects of autoschizis: a new cancer cell death induced by the synergistic action of ascorbate/menadione on human bladder carcinoma cells. Ultrastruct Pathol 25:183–192

    Article  PubMed  CAS  Google Scholar 

  26. Gilloteaux J, Jamison JM, Arnold D, Neal DR, Summers JL (2006) Morphology and DNA degeneration during autoschizic cell death in bladder carcinoma T24 cells induced by ascorbate and menadione treatment. Anat Rec A Discov Mol Cell Evol Biol 288:58–83

    PubMed  Google Scholar 

  27. Jamison JM, Gilloteaux J, Taper HS, Summers JL (2001) Evaluation of the in vitro and in vivo antitumor activities of vitamin C and K-3 combinations against human prostate cancer. J Nutr 131:158S-160S

    PubMed  Google Scholar 

  28. Borad MJ, Swift R, Berenson JR (2005) Efficacy of melphalan, arsenic trioxide, and ascorbic acid combination therapy (MAC) in relapsed and refractory multiple myeloma. Leukemia 19:154–156

    PubMed  CAS  Google Scholar 

  29. Gilloteaux J, Jamison JM, Neal DR, Summers JL (2005) Cell death by autoschizis in TRAMP prostate carcinoma cells as a result of treatment by ascorbate: menadione combination. Ultrastruct Pathol 29:221–235

    Article  PubMed  Google Scholar 

  30. Wee LM, Long LH, Whiteman M, Halliwell B (2003) Factors affecting the ascorbate- and phenolic-dependent generation of hydrogen peroxide in Dulbecco’s Modified Eagles Medium. Free Radic Res 37:1123–1130

    Article  PubMed  CAS  Google Scholar 

  31. Puskas F, Gergely P Jr, Banki K, Perl A (2000) Stimulation of the pentose phosphate pathway and glutathione levels by dehydroascorbate, the oxidized form of vitamin C. Faseb J 14:1352–1361

    Article  PubMed  CAS  Google Scholar 

  32. Puskas F, Gergely P, Niland B, Banki K, Perl A (2002) Differential regulation of hydrogen peroxide and Fas-dependent apoptosis pathways by dehydroascorbate, the oxidized form of vitamin C. Antioxid Redox Signal 4:357–369

    Article  PubMed  CAS  Google Scholar 

  33. Halliwell B, Clement MV, Ramalingam J, Long LH (2000) Hydrogen peroxide. Ubiquitous in cell culture and in vivo? IUBMB Life 50:251–257

    Article  PubMed  CAS  Google Scholar 

  34. Fujino M, Li XK, Kitazawa Y, et al (2002) Distinct pathways of apoptosis triggered by FTY720, etoposide, and anti-Fas antibody in human T-lymphoma cell line (Jurkat cells). J Pharmacol Exp Ther 300:939–945

    Article  PubMed  CAS  Google Scholar 

  35. Higginbottom K, Cummings M, Newland AC, Allen PD (2002) Etoposide-mediated deregulation of the G2M checkpoint in myeloid leukaemic cell lines results in loss of cell survival. Br J Haematol 119:956–964

    Article  PubMed  CAS  Google Scholar 

  36. Kagan VE, Kuzmenko AI, Tyurina YY, et al (2001) Pro-oxidant and antioxidant mechanisms of etoposide in HL-60 cells: role of myeloperoxidase. Cancer Res 61:7777–7784

    PubMed  CAS  Google Scholar 

  37. Custodio JB, Cardoso CM, Almeida LM (2002) Thiol protecting agents and antioxidants inhibit the mitochondrial permeability transition promoted by etoposide: implications in the prevention of etoposide-induced apoptosis. Chem Biol Interact 140:169–184

    Article  PubMed  CAS  Google Scholar 

  38. Tyurina YY, Tyurin VA, Yalowich JC, et al (1995) Phenoxyl radicals of etoposide (VP-16) can directly oxidize intracellular thiols: protective versus damaging effects of phenolic antioxidants. Toxicol Appl Pharmacol 131:277–288

    Article  PubMed  CAS  Google Scholar 

  39. Kagan VE, Yalowich JC, Day BW, et al (1994) Ascorbate is the primary reductant of the phenoxyl radical of etoposide in the presence of thiols both in cell homogenates and in model systems. Biochem 33:9651–9660

    Article  CAS  Google Scholar 

  40. Hall AG, Tilby MJ (1992) Mechanisms of action of, and modes of resistance to, alkylating agents used in the treatment of haematological malignancies. Blood Rev 6:163–173

    Article  PubMed  CAS  Google Scholar 

  41. Fojo T, Bates S (2002) Arsenic trioxide (As(2)O(3)): still a mystery. Cell Cycle 1:183–186

    PubMed  CAS  Google Scholar 

  42. Nimmanapalli R, Bali P, O’Bryan E, et al (2003) Arsenic trioxide inhibits translation of mRNA of bcr-abl, resulting in attenuation of Bcr-Abl levels and apoptosis of human leukemia cells. Cancer Res 63:7950–7958

    PubMed  CAS  Google Scholar 

  43. Dai J, Weinberg RS, Waxman S, Jing Y (1999) Malignant cells can be sensitized to undergo growth inhibition and apoptosis by arsenic trioxide through modulation of the glutathione redox system. Blood 93:268–277

    PubMed  CAS  Google Scholar 

  44. Korper S, Nolte F, Thiel E, Schrezenmeier H, Rojewski MT (2004) The role of mitochondrial targeting in arsenic trioxide-induced apoptosis in myeloid cell lines. Br J Haematol 124:186–189

    Article  PubMed  Google Scholar 

  45. Grad JM, Bahlis NJ, Reis I, et al (2001) Ascorbic acid enhances arsenic trioxide-induced cytotoxicity in multiple myeloma cells. Blood 98:805–813

    Article  PubMed  CAS  Google Scholar 

  46. Witenberg B, Kletter Y, Kalir HH, et al (1999) Ascorbic acid inhibits apoptosis induced by X irradiation in HL60 myeloid leukemia cells. Radiat Res 152:468–478

    PubMed  CAS  Google Scholar 

  47. Gruss-Fischer T, Fabian I (2002) Protection by ascorbic acid from denaturation and release of cytochrome c, alteration of mitochondrial membrane potential and activation of multiple caspases induced by H(2)O(2), in human leukemia cells. Biochem Pharmacol 63:1325–1335

    Article  PubMed  CAS  Google Scholar 

  48. Pullar JM, Winterbourn CC, Vissers MCM (1999) Loss of GSH and thiol enzymes in endothelial cells exposed to sublethal concentrations of hypochlorous acid. Am J Physiol 277:H1505–H1512

    PubMed  CAS  Google Scholar 

  49. Vissers MCM, Pullar JM, Hampton MB (1999) Hypochlorous acid causes caspase activation and apoptosis or growth arrest in human endothelial cells. Biochem J 344:443–449

    Article  PubMed  CAS  Google Scholar 

  50. Alexandra EK, Strom K, Cotgreave IA (1995) The uptake of ascorbic acid into human umbilical vein endothelial cells and its effect on oxidant insult. Biochem Pharmacol 50:1339–1346

    Article  Google Scholar 

  51. Tsao CS (1997) An overview of ascorbic acid chemistry and biochemistry. In: Packer L, Fuchs J (eds) Vitamin C in health and disease, 1st edn. Marcel Dekker, New York, pp 25–58

    Google Scholar 

  52. Fadeel B, Orrenius S, Zhivotovsky B (2000) The most unkindest cut of all: on the multiple roles of mammalian caspases. Leukemia 14:1514–1525

    Article  PubMed  CAS  Google Scholar 

  53. Chang HY, Yang X (2000) Proteases for cell suicide: functions and regulation of caspases. Microbiol Mol Biol Rev 64:821–846

    Article  PubMed  CAS  Google Scholar 

  54. Rojewski MT, Baldus C, Knauf W, Thiel E, Schrezenmeier H (2002) Dual effects of arsenic trioxide (As2O3) on non-acute promyelocytic leukaemia myeloid cell lines: induction of apoptosis and inhibition of proliferation. Br J Haematol 116:555–563

    Article  PubMed  CAS  Google Scholar 

  55. Carr AC, Frei B (1999) Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. Am J Clin Nutr 69:1086–1107

    PubMed  CAS  Google Scholar 

  56. Calderon PB, Cadrobbi J, Marques C, et al (2002) Potential therapeutic application of the association of vitamins C and K3 in cancer treatment. Curr Med Chem 9:2271–2285

    PubMed  Google Scholar 

  57. Chen Q, Espey MG, Krishna MC, et al (2005) Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci USA 102:13604–13609

    Article  PubMed  CAS  Google Scholar 

  58. Carr A, Frei B (1999) Does vitamin C act as a pro-oxidant under physiological conditions? FASEB J 13:1007–1024

    PubMed  CAS  Google Scholar 

  59. Halliwell B, Whiteman M (1997) Antioxidant and prooxidant properties of vitamin C. In: Packer L, Fuchs J (eds) Vitamin C in health and disease, 1st edn. Marcel Dekker, New York, pp 59–73

    Google Scholar 

  60. Lenton KJ, Sane AT, Therriault H, et al (2003) Vitamin C augments lymphocyte glutathione in subjects with ascorbate deficiency. Am J Clin Nutr 77:189–195

    PubMed  CAS  Google Scholar 

  61. Berger TM, Polidori MC, Dabbagh A, et al (1997) Antioxidant activity of vitamin C in iron-overloaded human plasma. J Biol Chem 272:15656–15660

    Article  PubMed  CAS  Google Scholar 

  62. Goldman R, Claycamp GH, Sweetland MA, et al (1999) Myeloperoxidase-catalyzed redox-cycling of phenol promotes lipid peroxidation and thiol oxidation in HL-60 cells. Free Radic Biol Med 27:1050–1063

    Article  PubMed  CAS  Google Scholar 

  63. Zhu J, Okumura H, Ohtake S, Nakamura S, Nakao S (2003) The molecular mechanism of arsenic trioxide-induced apoptosis and oncosis in leukemia/lymphoma cell lines. Acta Haematol 110:1–10

    Article  PubMed  CAS  Google Scholar 

  64. McCafferty-Grad J, Bahlis NJ, Krett N, et al (2003) Arsenic trioxide uses caspase-dependent and caspase-independent death pathways in myeloma cells. Mol Cancer Ther 2:1155–1164

    PubMed  CAS  Google Scholar 

  65. Clement MV, Ramalingam J, Long LH, Halliwell B (2001) The in vitro cytotoxicity of ascorbate depends on the culture medium used to perform the assay and involves hydrogen peroxide. Antioxid Redox Signal 3:157–163

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margret C. M. Vissers.

Additional information

This study was supported by the Health Research Council of New Zealand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gokhalé, P., Patel, T., Morrison, M.J. et al. The effect of intracellular ascorbate on the susceptibility of HL60 and Jurkat cells to chemotherapy agents. Apoptosis 11, 1737–1746 (2006). https://doi.org/10.1007/s10495-006-9787-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-9787-3

Keywords

Navigation