Skip to main content

Advertisement

Log in

Caspase-3 antisense oligodeoxynucleotides inhibit apoptosis in γ-irradiated human leukemia HL-60 cells

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

To study the inhibitory effects of caspase-3 mRNA antisense oligodeoxynucleotides (ASODNs) on apoptosis, we designed four ASODNs targeting different regions of caspase-3 mRNA and transfected them into human leukemia HL-60 cells. The transfected cells were given 10 Gy γ-irradiation followed by incubation for 18 h and measurement of apoptosis and caspase-3 expression. Our results showed that ASODN-2 targeting the 5′ non-coding region of sites –62 to –46, and ASODN-3 targeting the 5′ coding region of sites –1 to 16, both reduced apoptosis measured by gel electrophoresis and flow cytometry. Hoechst 33258 staining and TUNEL assay revealed that apoptotic indexes in the ASODN-2 and ASODN-3 groups were significantly lower than those in the untransfected and mismatched oligodeoxynucleotide (MODN) groups. Immunocytochemistry, Western blotting and RT-PCR showed that expression levels of caspase-3 protein and mRNA in both ASODN-2 and ASODN-3 groups were decreased compared with those in the untransfected and MODN groups. In conclusion, caspase-3 mRNA ASODNs can inhibit γ-radiation-induced apoptosis of HL-60 cells and reduce expression of caspase-3 protein and mRNA. The results suggest that antisense approach may be useful for therapeutic treatment of certain neurodegenerative diseases in which apoptosis is involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Saikumar P, Dong Z, Mikhailov V, Denton M, Weinberg JM, Venkatachalam MA (1999) Apoptosis: definition, mechanism, and relevance to disease. Am J Med 107:489–506

    Article  PubMed  CAS  Google Scholar 

  2. Held KD (1997) Radiation-induced apoptosis and its relationship to loss of clonogenic survival. Apoptosis 2:265–282

    Article  PubMed  CAS  Google Scholar 

  3. Verheij M, Bartelink H (2000) Radiation-induced apoptosis. Cell Tissue Res 301:133–142

    Article  PubMed  CAS  Google Scholar 

  4. Hunter A, Hendrikse A, Renan M, Abratt R (2006) Does the tumor microenvironment influence radiation-induced apoptosis? Apoptosis 11:1727–1735

    Article  PubMed  Google Scholar 

  5. Harms-Ringdahl M, Nicotera P, Radford IR (1996) Radiation induced apoptosis. Mutat Res 366:171–179

    PubMed  CAS  Google Scholar 

  6. Ward JF (1991) DNA damage and repair. Basic Life Sci 58:403–415

    PubMed  CAS  Google Scholar 

  7. Petak I, Houghton JA (2001) Shared pathways: death receptors and cytotoxic drugs in cancer therapy. Pathol Oncol Res 7:95–106

    Article  CAS  Google Scholar 

  8. Liebermann DA, Hoffman B, Steinman RA (1995) Molecular controls of growth arrest and apoptosis: p53-dependent and independent pathways. Oncogene 11:199–210

    PubMed  CAS  Google Scholar 

  9. Kimura K, Gelmann EP (2000) Tumor necrosis factor-α and Fas activate complementary Fas-associated death domain-dependent pathways that enhance apoptosis induced by γ-irradiation. J Biol Chem 275:8610–8617

    Article  PubMed  CAS  Google Scholar 

  10. Embree-Ku M, Venturini D, Boekelheide K (2002) Fas is involved in the p53-dependent apoptotic response to ionizing radiation in mouse testis. Biol Reprod 66:1456–1461

    Article  PubMed  CAS  Google Scholar 

  11. Li XM, Tong X, Song TB et al (1999) Expression of caspase-3 gene in apoptotic HL-60 cell and different human tumor cell lines. China J Radiol Med Prot 19:297–299 (in Chinese)

    Google Scholar 

  12. Afshar G, Jelluma N, Yang X et al (2006) Radiation-induced caspase-8 mediates p53-independent apoptosis in glioma cells. Cancer Res 66:4223–4232

    Article  PubMed  CAS  Google Scholar 

  13. Hara S, Nakashima S, Kiyono T et al (2004) Ceramide triggers caspase activation during gamma-radiation-induced apoptosis of human glioma cells lacking functional p53. Oncol Rep 12:119–123

    PubMed  CAS  Google Scholar 

  14. Zhuang S, Kochevar IE (2003) Ultraviolet A radiation induces rapid apoptosis of human leukemia cells by Fas ligand-independent activation of the Fas death pathways. Photochem Photobiol 78:61–67

    Article  PubMed  CAS  Google Scholar 

  15. Hosokawa Y, Sakakura Y, Tanaka L et al (2005) Radiation-induced apoptosis is independent of caspase-8 but dependent on cytochrome c and the caspase-9 cascade in human leukemia HL60 cells. J Radiat Res (Tokyo) 46:293–303

    Article  CAS  Google Scholar 

  16. Fadeel B, Orrenius S (2005) Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Intern Med 258:479–517

    Article  PubMed  CAS  Google Scholar 

  17. Friedlander RM (2003) Apoptosis and caspases in neurodegenerative diseases. N Engl J Med 348:1365–1375

    Article  PubMed  CAS  Google Scholar 

  18. Matsui T, Ramasamy K, Ingelsson M et al (2006) Coordinated expression of caspase 8, 3 and 7 mRNA in temporal cortex of Alzheimer disease: relationship to formic acid extractable Abeta42 levels. J Neuropathol Exp Neurol 65:508–515

    PubMed  CAS  Google Scholar 

  19. Gervais FG, Singaraja R, Xanthoudakis S et al (2002) Recruitment and activation of caspase-8 by the Huntingtin-interacting protein Hip-1 and a novel partner Hippi. Nat Cell Biol 4:95–105

    Article  PubMed  CAS  Google Scholar 

  20. Reed JC (2002) Apoptosis-based therapies. Nat Rev Drug Discov 1:111–121

    Article  PubMed  CAS  Google Scholar 

  21. Fischer U, Schulze-Osthoff K (2005) Apoptosis-based therapies and drug targets. Cell Death Differ 12(Suppl 1):942–961.

    Article  PubMed  CAS  Google Scholar 

  22. Probst JC (2000) Antisense oligodeoxynucleotide and ribozyme design. Methods 22:271–281

    Article  PubMed  CAS  Google Scholar 

  23. Nicholson DW (1999) Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6:1028–1042

    Article  PubMed  CAS  Google Scholar 

  24. Benchimol S (2001) p53-dependent pathways of apoptosis. Cell Death Differ 8:1049–1051

    Article  PubMed  CAS  Google Scholar 

  25. Rich T, Allen RL, Wyllie AH (2000) Defying death after DNA damage. Nature 407:777–783

    Article  PubMed  CAS  Google Scholar 

  26. Haupt S, Berger M, Goldberg Z, Haupt Y (2003) Apoptosis – the p53 network. J Cell Sci 116:4077–4085

    Article  PubMed  CAS  Google Scholar 

  27. Mattson MP (2000) Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 1:120–129

    Article  PubMed  CAS  Google Scholar 

  28. Yakovlev AG, Faden AI (2001) Caspase-dependent apoptotic pathways in CNS injury. Mol Neurobiol 24:131–144

    Article  PubMed  CAS  Google Scholar 

  29. Gervais FG, Xu D, Robertson GS et al (1999) Involvement of caspases in proteolytic cleavage of Alzheimer's Amyloid-beta precursor protein and amyloidogenic A beta peptide formation. Cell 97:395–406

    Article  PubMed  CAS  Google Scholar 

  30. Takuma H, Tomiyama T, Kuida K, Mori H (2004) Amyloid beta peptide-induced cerebral neuronal loss is mediated by caspase-3 in vivo. J Neuropathol Exp Neurol 63:255–261

    PubMed  CAS  Google Scholar 

  31. Reddy PH, Williams M, Charles V et al (1998) Behavioural abnormalities and selective neuronal loss in HD transgenic mice expressing mutated full-length HD cDNA. Nat Genet 20: 198–202

    Article  PubMed  CAS  Google Scholar 

  32. Goldberg YP, Nicholson DW, Rasper DM et al (1996) Cleavage of Huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nat Genet 13:442–449

    Article  PubMed  CAS  Google Scholar 

  33. Cid C, Alvarez-Cermeño J C, Regidor I, Plaza J, Salinas M, Alcázar A (2003) Caspase inhibitors protect against neuronal apoptosis induced by cerebrospinal fluid from multiple sclerosis patients. J Neuroimmunol 136:119–124

    Article  PubMed  CAS  Google Scholar 

  34. Burkhard J, Zangemeister-Wittke U (2002) Antisense therapy for cancer—the time of truth. Lancet Oncol 3:672–683

    Article  Google Scholar 

  35. Ingo T, Bernd D, Gunther H (2001) Antisense therapy in oncology: new hope for an old idea? Lancet 358:489–497

    Article  Google Scholar 

  36. Gridley DS, Slater JM (2004) Combining gene therapy and radiation against cancer. Curr Gene Ther 4:231–248

    PubMed  CAS  Google Scholar 

  37. Noguchi S, Hirashima N, Furuno T, Nakanishi M (2003) Remarkable induction of apoptosis in cancer cells by a novel cationic liposome complexed with a bcl-2 antisense oligonucleotide. J Control Release 88:313–320

    Article  CAS  Google Scholar 

  38. Masui T, Hosotani R, Ito D et al (2006) Bcl-XL antisense oligonucleotides coupled with antennapedia enhances radiation-induced apoptosis in pancreatic cancer. Surgery 140:149–160

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by a grant from the National Natural Science Foundation of China (No. 39880008). We are most grateful to Prof. Dwight C. German (Department of psychiatry, University of Texas Southwestern Medical Center) for his suggestions and careful review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Bao Song.

Additional information

The work was supported by a grant from the National Natural Science Foundation of China (No. 39880008).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, XT., Song, TB., Du, BL. et al. Caspase-3 antisense oligodeoxynucleotides inhibit apoptosis in γ-irradiated human leukemia HL-60 cells. Apoptosis 12, 743–751 (2007). https://doi.org/10.1007/s10495-006-0018-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-0018-8

Keywords

Navigation