Skip to main content
Log in

Inducing Apoptosis and Decreasing Cell Proliferation in Human Acute Promyelocytic Leukemia Through Regulation Expression of CASP3 by Let-7a-5p Blockage

  • Original Article
  • Published:
Indian Journal of Hematology and Blood Transfusion Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are short and single strand non-coding RNAs that involved in post-transcriptional regulation of gene expression. Dysregulation of miRNA expression is important event in the many of malignant diseases. Up-regulation of Let-7a-5p expression in acute myeloid leukemia in human in previous studies was reported. In this study blockage of Let-7a-5p in human acute promyelocytic leukemia cell line (HL60) was done by using locked nucleic acid (LNA) method and subsequently expression of Let-7a-5p, cell proliferation, apoptosis, necrosis, and CASP3 expression was measured. At three time points 24, 48 and 72 h after LNA anti- Let-7a-5p transfection, assessment of Let-7a-5p expression by qRT real-time PCR was completed. The MTT assay and annexin/PI staining have been performed. Also, CASP3 expression at different time points after LNA anti-Let-7a-5p transfection in HL60 cell line was measured. The results at three-time points after LNA transfection were represented that Let-7a-5p expression was lower in the LNA-anti-Let-7a group compared to the control groups. The cell viability significantly was different between LNA-anti-Let-7a group and control groups. Increasing apoptotic ratio was associated with Let-7a-5p blockage in the LNA-anti-Let-7a group compared with control groups. Also, the necrotic ratio was higher in the LNA-anti-Let-7a group rather than the other groups. Western blotting revealed that CASP3 expression associated with Let-7a-5p inhibition. Our results displayed that blockage of Let-7a-5p can reduced cell viability mainly due to the induction of apoptosis and CASP3 up-regulation in HL60 cells. These results can be useful in translational medicine for research of antisense therapy in leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Randolph TR (2000) Acute promyelocytic Leukemia (AML-M3)-part 1: pathophysiology, clinical diagnosis, and differentiation therapy. Clin Lab Sci 13(2):98–105

    CAS  PubMed  Google Scholar 

  2. Borrow J, Goddard AD, Sheer D, Solomon E (1990) Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science 249(4976):1577–1580

    Article  CAS  PubMed  Google Scholar 

  3. Dong C, Ji M, Ji C (2009) Micro-RNAs and their potential target genes in leukemia pathogenesis. Cancer Biol Ther 8(3):200–205

    Article  CAS  PubMed  Google Scholar 

  4. Reddy SDN, Gajula RP, Pakala SB, Kumar R (2010) MicroRNAs and cancer therapy: the next wave or here to stay? Cancer Biol Ther 9(7):479–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Drakaki A, Iliopoulos D (2009) MicroRNA gene networks in oncogenesis. Curr Genom 10(1):35–41

    Article  CAS  Google Scholar 

  6. Fabbri M, Garzon R, Andreeff M, Kantarjian H, Garcia-Manero G, Calin G (2008) MicroRNAs and noncoding RNAs in hematological malignancies: molecular, clinical and therapeutic implications. Leukemia 22(6):1095–1105

    Article  CAS  PubMed  Google Scholar 

  7. Pelosi E, Labbaye C, Testa U (2009) MicroRNAs in normal and malignant myelopoiesis. Leuk Res 33(12):1584–1593

    Article  CAS  PubMed  Google Scholar 

  8. Yendamuri S, Calin G (2009) The role of microRNA in human leukemia: a review. Leukemia 23(7):1257–1263

    Article  CAS  PubMed  Google Scholar 

  9. Schotte D, Chau J, Sylvester G, Liu G, Chen C, van der Velden V et al (2009) Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia. Leukemia 23(2):313–322

    Article  CAS  PubMed  Google Scholar 

  10. Li Y, Lin J, Yang J, Qian J, Qian W, D-m Yao et al (2013) Overexpressed let-7a-3 is associated with poor outcome in acute myeloid leukemia. Leuk Res 37(12):1642–1647

    Article  CAS  PubMed  Google Scholar 

  11. Tsang WP, Kwok TT (2008) Let-7a microRNA suppresses therapeutics-induced cancer cell death by targeting caspase-3. Apoptosis 13(10):1215–1222

    Article  CAS  PubMed  Google Scholar 

  12. Zamore PD, Haley B (2005) Ribo-gnome: the big world of small RNAs. Science 309(5740):1519–1524

    Article  CAS  PubMed  Google Scholar 

  13. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120(5):635–647

    Article  CAS  PubMed  Google Scholar 

  14. Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D et al (2007) The let-7 microRNA represses cell proliferation pathways in human cells. Can Res 67(16):7713–7722

    Article  CAS  Google Scholar 

  15. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407(6805):770–776

    Article  CAS  PubMed  Google Scholar 

  16. Stenvang J, Petri A, Lindow M, Obad S, Kauppinen S (2012) Inhibition of microRNA function by antimiR oligonucleotides. Silence 3(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ørom UA, Kauppinen S, Lund AH (2006) LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene 372:137–141

    Article  PubMed  Google Scholar 

  18. Sharifi M, Salehi R (2015) Blockage of miR-92a-3p with locked nucleic acid induces apoptosis and prevents cell proliferation in human acute megakaryoblastic leukemia. Cancer Gene Ther 23:29–35

    Article  PubMed  Google Scholar 

  19. Airiau K, Prouzet-Mauléon V, Rousseau B, Pigneux A, Jeanneteau M, Giraudon M et al (2016) Synergistic cooperation between ABT-263 and MEK1/2 inhibitor: effect on apoptosis and proliferation of acute myeloid leukemia cells. Oncotarget 7(1):845–859

    Article  PubMed  Google Scholar 

  20. Garzon R, Garofalo M, Martelli MP, Briesewitz R, Wang L, Fernandez-Cymering C et al (2008) Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci 105(10):3945–3950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Whitman SP, Maharry K, Radmacher MD, Becker H, Mrózek K, Margeson D et al (2010) FLT3 internal tandem duplication associates with adverse outcome and gene-and microRNA-expression signatures in patients 60 years of age or older with primary cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. Blood 116(18):3622–3626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. O’Connell RM, Chaudhuri AA, Rao DS, Gibson WS, Balazs AB, Baltimore D (2010) MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output. Proc Natl Acad Sci 107(32):14235–14240

    Article  PubMed  PubMed Central  Google Scholar 

  23. Han Y-C, Park CY, Bhagat G, Zhang J, Wang Y, Fan J-B et al (2010) microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. J Exp Med 207(3):475–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wallace J, Hu R, Mosbruger TL, Dahlem TJ, Stephens WZ, Rao DS et al (2016) Genome-wide CRISPR-Cas9 screen identifies MicroRNAs that regulate myeloid leukemia cell growth. PLoS ONE 11(4):e0153689

    Article  PubMed  PubMed Central  Google Scholar 

  25. Starczynowski DT, Kuchenbauer F, Argiropoulos B, Sung S, Morin R, Muranyi A et al (2010) Identification of miR-145 and miR-146a as mediators of the 5q-syndrome phenotype. Nat Med 16(1):49–58

    Article  CAS  PubMed  Google Scholar 

  26. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci 99(24):15524–15529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ola MS, Nawaz M, Ahsan H (2011) Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol Cell Biochem 351(1–2):41–58

    Article  CAS  PubMed  Google Scholar 

  28. Guan X, Liu Z, Liu H, Yu H, Wang L-E, Sturgis EM et al (2013) A functional variant at the miR-885-5p binding site of CASP3 confers risk of both index and second primary malignancies in patients with head and neck cancer. FASEB J 27(4):1404–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fesik SW (2005) Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 5(11):876–885

    Article  CAS  PubMed  Google Scholar 

  30. Andersen MH, Becker JC, Thor Straten P (2005) Regulators of apoptosis: suitable targets for immune therapy of cancer. Nat Rev Drug Discov 4(5):399–409

    Article  CAS  PubMed  Google Scholar 

  31. Lee JW, Soung YH, Kim SY, Park WS, Nam SW, Lee JY et al (2006) Somatic mutation of pro-apoptosis caspase-6 gene is rare in breast and lung carcinomas. Pathology 38(4):358–359

    Article  PubMed  Google Scholar 

  32. Kania J, Konturek S, Marlicz K, Hahn E, Konturek P (2003) Expression of survivin and caspase-3 in gastric cancer. Dig Dis Sci 48(2):266–271

    Article  CAS  PubMed  Google Scholar 

  33. Soung YH, Lee JW, Kim SY, Park WS, Nam SW, Lee JY et al (2004) Somatic mutations of CASP3 gene in human cancers. Hum Genet 115(2):112–115

    Article  CAS  PubMed  Google Scholar 

  34. Stoffel M, Poy MN, Tuschl TH (2015) MicroRNA and methods for inhibiting same. Google Patents

  35. Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4(3):143–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Youk J, Koh Y, Park H, Kim D-Y, Lee C-S, Lee J et al (2014) Mutation in retinoic X receptor-γ is a possible mechanism of all-trans retinoic acid resistance in acute promyelocytic leukemia (APL): identifying genetic changes related to drug resistance in APL using whole exome sequencing. Blood 124(21):2358

    Google Scholar 

Download references

Acknowledgements

This study was conducted with the support of Isfahan University of Medical Sciences (IRAN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Sharifi.

Ethics declarations

Ethical Approval

This study was approved by the local ethics committee of Isfahan University of Medical Sciences (IRAN) and the studies have been approved by the appropriate institutional and/or a national research ethics committee and have been performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fasihi-Ramandi, M., Moridnia, A., Najafi, A. et al. Inducing Apoptosis and Decreasing Cell Proliferation in Human Acute Promyelocytic Leukemia Through Regulation Expression of CASP3 by Let-7a-5p Blockage. Indian J Hematol Blood Transfus 34, 70–77 (2018). https://doi.org/10.1007/s12288-017-0809-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12288-017-0809-9

Keywords

Navigation