Skip to main content
Log in

Biphasic behavior of changes in elemental composition during staurosporine-induced apoptosis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Although the identification of events that occur during apoptosis is a fundamental goal of apoptotic cell death research, little is know about the precise sequence of changes in total elemental composition during apoptosis. We evaluated total elemental composition (Na, Mg, P, Cl, S, and K) in relation to molecular and morphological features in human U937 cells induced to undergo apoptosis with staurosporine, an intrinsic pathway activator. To evaluate total elemental content we used electron probe X-ray microanalysis to measure simultaneously all elements from single, individual cells. We observed two phases in the changes in elemental composition (mainly Na, Cl and K). The early phase was characterized by a decrease in intracellular K (P < 0.001) and Cl (P < 0.001) content concomitant with cell shrinkage, and preceded the increase in proteolytic activity associated with the activation of caspase-3. The later phase started with caspase-3 activation, and was characterized by a decrease in the K/Na ratio (P < 0.001) as a consequence of a significant decrease in K and increase in Na content. The inversion of intracellular K and Na content was related with the inhibition of Na+/K+ ATPase. This later phase was also characterized by a significant increase (P < 0.001) in intracellular Cl with respect to the early phase. In addition, we found a decrease in S content and an increase in the P/S ratio. These distinctive changes coincided with chromatin condensation and DNA fragmentation. Together, these findings support the concept that changes in total elemental composition take place in two phases related with molecular and morphological features during staurosporine-induced apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Okada Y, Maeno E, Shimizu T, Dezaki K, Wang J, Morishima S. Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). J Physiol 2001; 532: 3–16.

    Article  CAS  PubMed  Google Scholar 

  2. Bortner CD, Cidlowski JA. Caspase independent/dependent regulation of K+, cell shrinkage, and mitochondrial membrane potential during lymphocyte apoptosis. J Biol Chem 1999; 274: 21953–21962.

    Article  CAS  PubMed  Google Scholar 

  3. Hughes FM, Bortner CD, Purdy GD, Cidlowski JA. Intracellular K+ suppresses the activation of apoptosis in lymphocytes. J Biol Chem 1997; 272: 30567–30576.

    CAS  PubMed  Google Scholar 

  4. McCarthy JV, Cotter TG. Cell shrinkage and apoptosis: a role for potassium and sodium efflux. Cell Death Differ 1997; 4: 756–770.

    Article  CAS  Google Scholar 

  5. Dallaporta B, Hirsch T, Susin SA, et al. Potassium leakage during the apoptotic degradation phase. J Immunol 1998; 160: 5605–5615.

    CAS  PubMed  Google Scholar 

  6. Yu SP, Yeh CH, Sensi SL, et al. Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 1997; 278: 114–117.

    Article  CAS  PubMed  Google Scholar 

  7. Yu SP, Yeh CH, Gottron F, Wang X, Grabb MC, Choi DW. Role of the outward delayed rectifier K+ current in ceramide-induced caspase activation and apoptosis in cultured neurons. J Neurochem 1999; 73: 933–941.

    CAS  PubMed  Google Scholar 

  8. Wang L, Xu D, Dai W, Lu L. An ultraviolet-activated K+ channel mediates apoptosis of myeloblastic leukemia cells. J Biol Chem 1999; 274: 3678–3685.

    CAS  PubMed  Google Scholar 

  9. Nietsch HH, Roe MW, Fiekers JF, Moore AL, Lidofsky SD. Activation of potassium and chloride channels by tumor necrosis factor α. Role in liver cell death. J Biol Chem 2000; 275: 20556–20561.

    Article  CAS  PubMed  Google Scholar 

  10. Krick S, Platoshyn O, Sweeney M, Kim H, Yuan JXJ. Activation of K+ channels induces apoptosis in vascular smooth muscle cells. Am J Physiol Cell Physiol 2001; 280: C970–C979.

    CAS  PubMed  Google Scholar 

  11. Krick S, Platoshyn O, McDaniel SS, Rubin LJ, Yuan JXJ. Augmented K currents and mitochondrial membrane depolarization in pulmonary artery myocyte apoptosis. Am J Physiol Lung Cell Mol Physiol 2001; 281: L887–L894.

    CAS  PubMed  Google Scholar 

  12. Trimarchi JR, Liu L, Smith PJS, Keefe DL. Apoptosis recruits two-pore domain potassium channels used for homeostatic volume regulation. Am J Physiol Cell Physiol 2002; 282: C588–C594.

    CAS  PubMed  Google Scholar 

  13. Maeno E, Ishizaki Y, Kanaseki T, Hazama A, Okada Y. Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc Natl Acad Sci USA 2000; 97: 9487–9492.

    Article  CAS  PubMed  Google Scholar 

  14. Thompson GJ, Langlais C, Cain K, Conley EC, Cohen GM. Elevated extracellular [K+] inhibits death-receptor- and chemical-mediated apoptosis prior to caspase activation and cytochrome c release. Biochem J 2001; 357: 37–145.

    Article  Google Scholar 

  15. Brevnova EE, Platoshyn O, Zhang S, Yuan JXJ. Overexpression of human KCNA5 increases and enhances apoptosis. Am J Physiol Cell Physiol 2004; 287: C715–C722.

    Article  CAS  PubMed  Google Scholar 

  16. Szabò I, Lepple-Wienhues A, Kaba KN, Zoratti M, Gulbins E, Lang F. Tyrosine kinase-dependent activation of a chloride channel in CD95-induced apoptosis in T lymphocytes. Proc. Natl. Acad. Sci. USA 1998; 95: 6169–6174.

    PubMed  Google Scholar 

  17. Bortner CD, Hughes FM, Cidlowski JA. A primary role for K+ and Na+ efflux in the activation of apoptosis. J Biol Chem 1997; 272: 32436–32442.

    Article  CAS  PubMed  Google Scholar 

  18. Bortner CD, Cidlowski JA. Uncoupling cell shrinkage from apoptosis reveals that Na+ influx is required for volume loss during programmed cell death. J Biol Chem 2003; 278: 39176–39184.

    Article  CAS  PubMed  Google Scholar 

  19. Thornberry NA, Lazebnik Y. Caspases: Enemies within. Science 1998; 281: 1312–1316.

    Article  CAS  PubMed  Google Scholar 

  20. Zimmerman KC, Bonzon C, Green DR. The machinery of programmed cell death. Pharmacol Ther 2001; 92: 57–70.

    Google Scholar 

  21. Cain K, Langlais C, Sun XM, Brown DG, Cohen GM. Physiological concentration of K+ inhibit cytochrome c-dependent formation of the apoptosome. J Biol Chem 2001; 276: 41985–41990.

    Article  CAS  PubMed  Google Scholar 

  22. King KL, Jewell CM, Bortner CD, Cidlowski JA. 28S ribosome degradation in lymphoid cell apoptosis: Evidence for caspase and Bcl-2-dependent and -independent pathways. Cell Death Differ 2000; 7: 994–101.

    Article  CAS  PubMed  Google Scholar 

  23. Rassola A, Far DF, Hofman P, Rossi B. Lack of internucleosomal DNA fragmentation is related to Cl efflux impairment in hematopoietic cell apoptosis. FASEB J 1999; 13: 1711–1723.

    Google Scholar 

  24. Courageot MP, Lépine S, Hours M, Giraud F, Sulpice JC. Involvements of sodium in early phosphatidylserine exposure and phospholipid scrambling by P2X7 purinoreceptor in thymocytes. J Biol Chem 2004; 279: 21815–21823.

    Article  CAS  PubMed  Google Scholar 

  25. Andersson C, Roomans GM. Determination of chloride efflux by X-ray microanalysis versus MQAE-fluorescence. Microsc Res Tech 2002; 59: 531–535.

    Article  CAS  PubMed  Google Scholar 

  26. Haddad P, Beck JS, Boyer JL, Graf J. Role of chloride ions in liver cell regulation. Am J Physiol Gastrointest Liver Physiol 1991; 261: G340–G348.

    CAS  Google Scholar 

  27. Fernández-Segura E, Cañizares FJ, Cubero MA, Warley A, Campos A. A procedure to prepare cultured cells in suspension for electron probe X-ray microanalysis: Application to scanning and transmission electron microscopy. J Microsc 1999; 196: 19–25.

    PubMed  Google Scholar 

  28. Warley A, Skepper JN. Long freeze-drying times are not necessary during the preparation of thin sections for X-ray microanalysis. J Microsc 2000; 198: 116–23.

    Article  CAS  PubMed  Google Scholar 

  29. Roomans GM. Quantitative electron probe X-ray microanalysis of biological specimens. J Electron Microsc Tech 1988; 9: 19–44.

    CAS  PubMed  Google Scholar 

  30. Warley A. X-ray microanalysis for biologists. London: Portland Press 1997.

    Google Scholar 

  31. Bortner CD, Gómez-Angelats M, Cidlowski JA. Plasma membrane depolarization without repolarization is an early molecular event in anti-Fas-induced apoptosis. J Biol Chem 2001; 276: 4304–4314.

    Article  CAS  PubMed  Google Scholar 

  32. Bertrand R, Solary E, O'Connor P, Kohn KW, Pommier Y. Induction of common pathway of apoptosis by staurosporine. Exp Cell Res 1994, 211: 314–321.

    Article  CAS  PubMed  Google Scholar 

  33. Mills JC, Stone NL, Erhardt J, Pittman RN. Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. J Cell Biol 1998, 140: 627–636.

    Article  CAS  PubMed  Google Scholar 

  34. Abraham EH, Breslow JL, Epstein J, Chang-Sing P, Lechene C. Preparation of individual human diploid fibroblasts and study of ion transport. Am J Physiol 1985; 248: C154–C164.

    CAS  PubMed  Google Scholar 

  35. Zierold K. Effects of cadmium on electrolyte ions in cultured rat hepatocytes studied by X-ray microanalysis of cryosections. Toxicol Appl Pharmacol 1997; 144: 70–76.

    Article  CAS  PubMed  Google Scholar 

  36. Fernández-Segura E, Cañizares FJ, Cubero MA, Warley A, Campos A. Changes in elemental content during apoptotic cell death studied by electron probe X-ray microanalysis. Exp Cell Res 1999; 253: 454–462.

    PubMed  Google Scholar 

  37. Skepper JN, Karydis I, Garnett MR, et al. Changes in elemental concentrations are associated with early stages of apoptosis in human monocyte-macrophages exposed to oxidized low-density lipoprotein: An X-ray microanalytical study. J Pathol 1999; 188: 100–106.

    Article  CAS  PubMed  Google Scholar 

  38. Salido M, Vilches J, Lopez A, Roomans GM. Neuropeptides bombesin and calcitonin inhibit apoptosis-related elemental changes in prostate carcinoma cell lines. Cancer 2002; 94: 368–377.

    Article  CAS  PubMed  Google Scholar 

  39. Salido M, Vilches J, Roomans GM. Changes in elemental concentration in LNCaP cells are associated with a protective effect of neuropeptides on etoposide-induced apoptosis. Cell Biol Int 2004; 28: 397–402.

    Article  CAS  PubMed  Google Scholar 

  40. Okada Y, Maeno E, Shimizu T, Manabe K, Mori S, Nabekura T. Dual roles of plasmalemmal chloride channels in induction of cell death. Pflügers Arch 2004; 448: 287–295.

    Article  CAS  PubMed  Google Scholar 

  41. Dallaporta B, Marchetti P, de Pablo MA, et al. Plasma membrana potential in thymocyte apoptosis. J Immunol 1999; 162: 6534–6542.

    CAS  PubMed  Google Scholar 

  42. Vu CCQ, Bortner CD, Cidlowski JA. Differential involvement of initiator caspases in apoptotic volume decrease and potassium efflux during Fas- and UV-induced cell death. J Biol Chem 2001; 276: 37602–37611.

    Article  CAS  PubMed  Google Scholar 

  43. Porcelli AM, Ghelli A, Zanna C, Valente P, Ferroni S, Rugolo M. Apoptosis induced by staurosporine in ECV304 cells require cell shrinkage and upregulation of Cl conductance. Cell Death Differ 2004; 11: 655–662.

    CAS  PubMed  Google Scholar 

  44. Platoshyn O, Zhang S, McDaniel SS, Yuan JXJ. Cytochrome c activates K+ channels before inducing apoptosis. Am J Physiol Cell Physiol 2002; 283: C1298–C1305.

    Google Scholar 

  45. Remillard CV, Yuan XJJ. Activation of K+ channels: An essential pathway in programmed cell death. Am J Physiol Lung Cel Mol Physiol 2004; 286: L49–L67.

    Google Scholar 

  46. Dupéré-Minier G, Hamelin C, Desharnais P, Bernier J. Apoptotic volume decrease, pH acidification and chloride channel activation during apoptosis requires CD45 expression in HPB-ALL T cells. Apoptosis 2004; 9: 543–551.

    PubMed  Google Scholar 

  47. Shimizu T, Numata T, Okada Y. A role of reactive oxygen in apoptotic activation of volume-sensitive Cl(-) channel. Proc Natl Acad Sci USA 2004; 101: 6770–6773.

    CAS  PubMed  Google Scholar 

  48. Widlak P, Garrard WT. Discovery, regulation, and action of the major apoptotic nucleases DFF40/CAD and endonuclease G. J Cell Biochem 2005; 94: 1078–1087.

    Article  CAS  PubMed  Google Scholar 

  49. Krep H, Lefurgey A, Graves SW, Hockett D, Ingram P, Hollenberg NK. Elemental composition of Na pump inhibited rabbit aorta VSM cells by electron probe X-ray microanalysis. Am J Physiol 1996; 271: H514–H520.

    CAS  PubMed  Google Scholar 

  50. Yu SP, Regulation and critical role of potassium homeostasis in apoptosis. Prog Neurobiol 2003; 70: 363–386.

    Article  CAS  PubMed  Google Scholar 

  51. Barbiero G, Duranti F, Bonelli G, Amenta J, Baccino FM. Intracellular ionic variations in apoptotic death of L cells by inhibitors of cell cycle progression. Exp Cell Res 1995; 217: 410–418.

    Article  CAS  PubMed  Google Scholar 

  52. Nobel CSI, Aronson J, van den Dobbelsteen DJ, Slater AFG. Inhibition of Na+/K+-ATPase may be one mechanism contributing to potassium efflux and cell shrinkage in CD95-induced apoptosis. Apoptosis 2000; 5: 153–163.

    Article  CAS  PubMed  Google Scholar 

  53. Mann CL, Bortner CD, Jewell CM, Cidlowski JA. Glucocorticoid-induced plasma membrane depolarization during tymocytes apoptosis: Association with cell shrinkage and degradation of the Na+/K+-adenosine triphosphatase. Endocrinology 2001; 142: 5059–5068.

    CAS  PubMed  Google Scholar 

  54. Xiao AY, Wang XQ, Yang A, Yu SP. Slight impairment of Na+,K+-ATPase synergistically aggravates ceramide- and β-amyloid-induced apoptosis in cortical neurons. Brain Res 2002; 955: 253–259.

    Article  CAS  PubMed  Google Scholar 

  55. Xiao AY, Wei L, Xia S, Rothman S, Yu SP. Ionic mechanism of ouabain-induced concurrent apoptosis and necrosis in individual cultured cortical neurons. J Neurochem 2002; 22: 1350–1362.

    CAS  Google Scholar 

  56. Wang XQ, Xiao AY, Sheline C, et al. Apoptotic insults impair Na+,K+-ATPase activity as a mechanism of neuronal death mediated by concurrent ATP deficiency and oxidant stress. J Cell Sci 2003; 116: 2099–2110.

    CAS  PubMed  Google Scholar 

  57. Düssmann H, Rehm M, Kögel D, Prehn JHM. Outer mitochondrial membrane permeabilization during apoptosis triggers caspase-independent mitochondrial and caspase-dependent membrane potential depolarization: a single-cell analysis. J Cell Sci 2003; 116: 525–536.

    PubMed  Google Scholar 

  58. Arrebola F, Zabiti S, Cañizares FJ, Cubero MA, Crespo PV, Fernández-Segura E. Changes in intracellular sodium, chlorine, and potassium concentrations in staurosporine-induced apoptosis. J Cell Physiol 2004; 204: 500–507.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Fernández-Segura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arrebola, F., Cañizares, J., Cubero, M.A. et al. Biphasic behavior of changes in elemental composition during staurosporine-induced apoptosis. Apoptosis 10, 1317–1331 (2005). https://doi.org/10.1007/s10495-005-2718-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-005-2718-x

Keywords

Navigation