Skip to main content
Log in

Ultrastructural and X-ray microanalysis of U-937 cells in hypertonia-induced apoptosis

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The results of this study of the ultrastructural changes in U-937 cells in the apoptotic state are largely consistent with analogous data available in the literature. However, we also obtained original data on the ultrastructural changes in cellular organelles and immunocytochemical localization and distribution of proteasomes. It was shown that, when apoptosis was induced by incubation of cells in a hypertonic sucrose solution (200–400 mM), the Golgi apparatus (GA) was localized close to the plasma membrane. This fact is indirect evidence that cytoskeletal elements (particularly microtubules, which hold GA in the center of the cell) are depolymerized already at the early stages of apoptosis. At the late stages of apoptosis, the distance between individual GA cisterns significantly increases, which is apparently due to the cleavage of their binding proteins, golgins. Mitochondria in apoptotic cells do not change significantly. They have regularly spaced cristae and a fairly dense matrix containing single vacuoles. At all stages of apoptosis, the nucleus and cytoplasm of U-937 cells contained proteasomes, which were represented by small rod-shaped osmiophilic particles approximately 12 × 30 nm in size. These particles formed aggregates of varying density and size, not covered with a membrane. We assumed that they are similar to the “processing bodies,” or aggresomes, which were described in the literature. The latter are detected in cells under conditions of suppressed transcription in the nucleus and, according to some researchers, are involved in the storage and degradation of various mRNAs, RNPs, and proteins. X-ray spectral analysis revealed changes in the intracellular content of Na+ and K+ at the level of single cells during apoptosis induced by osmotic shock. An increased ratio of intracellular Na+/K+ compared to the control for the majority of cells in apoptosis was shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GA:

Golgi apparatus

ER:

endoplasmic reticulum

LM:

light microscopy

EM:

electron microscopy

X-RMA:

X-ray microanalysis

References

  • Arden, N. and Betenbaugh, M.J., Life and death in mammalian cell culture: strategies for apoptosis inhibition, Trends Biotechnol., 2004, vol. 22, pp. 174–180.

    Article  CAS  PubMed  Google Scholar 

  • Arrebola, F., Zabiti, S., Canizares, J., Cubero, M.A., Crespo, PV., and Fernandez-Segura, E., Changes in intracellular sodium, chlorine, and potassium concentrations in staurosporine-induced apoptosis, J. Cell. Physiol., 2004, vol. 204, pp. 500–507.

    Article  Google Scholar 

  • Arrebola, F., Canizares, J., Cubero, MA., Crespo, PV., Warley, A., and Fernandez-Segura, E., Biphasic behavior of changes in elevental composition during staurosporineinduñed apoptosis, Apoptosis, 2005, vol. 10, pp. 1317–1333.

    Article  CAS  PubMed  Google Scholar 

  • Beckman, C.J. and Parker, R., P-bodies, stress granules and viral life cycles, Cell Host Microb., 2008, vol. 3, pp. 206–212.

    Article  Google Scholar 

  • Benson, R.S.P., Heer, S., Dive, C., Watson, J.M., Characterization of cell volume loss in CEM-C7A cells during dexamethasone-induced apoptosis, Am. J. Physiol. Cell Physiol., 1996, vol. 270, pp. C1190–C1203.

    CAS  Google Scholar 

  • Biggiogera, M., Bottone, M.G., and Pelliciari, C., Nuclear RNA is extruded from apoptotic cells, J. Histochem. Cytochem., 1998, vol. 46, pp. 999–1005.

    Article  CAS  PubMed  Google Scholar 

  • Biggiogera, M., Scovassi, A.I., Soldani, C., Vecchio, L., and Pellicciari, C., Rearrangement of nuclear ribonucleoprotein (RNP)-containing structures during apoptosis and transcriptional arrest, Biol. Cell., 2004, vol. 96, pp. 603–615.

    Article  CAS  PubMed  Google Scholar 

  • Bonnano, E., Tagliafierro, G., Carlá, E.C., Montianari, G., Spagnoli, L.G., and Dini, L., Synchronized onset of nuclear and cell surface modifications in U937 cells during apoptosis, Eur. J. Histochem., 2002, vol. 46, pp. 61–74.

    Article  Google Scholar 

  • Bortner, C.D. and Cidlowski, A., Cell shrinkage and monovalent cation fluxes: role in apoptosis, Arch. Biochem. Biophys., 2007, vol. 462, pp. 176–188.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bottone, M.G., Santin, G., Aredia, F., Bernocchi, G., Pelliciari, C., and Scovassi, A.I., Morphological features of organelle during apoptosis: an overview, Cell, 2013, vol. 2, pp. 294–305.

    Article  Google Scholar 

  • Cmarko, D., Verschure, P.J., Otte, A.P., van-Driel, R., and Fakan, S., Polycomb group gene silencing proteins are concentrated in the perichromatin compartment of the mammalian nucleus, J. Cell Sci., 2003, vol. 116, pp. 335–343.

    Article  CAS  PubMed  Google Scholar 

  • Cotter, T.G., Apoptosis and cancer: the genesis of a research field, Nat. Rev. Cancer, 2009, vol. 9, pp. 501–507.

    Article  CAS  PubMed  Google Scholar 

  • Favaloro, B., Allocati, N., Graziano, V., Di Ilio, C., and De Laurenzi, V., Role of apoptosis in disease, Aging, 2012, vol. 4, pp. 330–349.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gallo, C., Munro, E., Rasoloson, D., Merritt, C., and Seydoux, G., Processing bodies and germ granules are distinct RNA granules that interact in C. elegans embryos, Dev. Biol., 2008, vol. 323, pp. 76–87.

    Article  CAS  PubMed  Google Scholar 

  • Glickman, M.H. and Ciechanover, A., The Ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction, Physiol. Rev., 2002, vol. 82, pp. 373–428.

    CAS  PubMed  Google Scholar 

  • Gutiérrez, B., Osorio, L., Motta, M.C.M., Huima-Byron, T., Erdjument-Bromage, H., Muñoz, C., Sagua, H., Mortara, R.A., Escheverría, A., Araya, J.E., and Gonzáles, J., Molecular characterization and intracellular distribution of the alpha 5 subunit of Trypanosoma cruzi 20S proteasome, Parasitol. Int., 2009, vol. 58, pp. 367–374.

    Article  PubMed  Google Scholar 

  • Haraguchi, C., Mabuchi, M., Hirata, S., Shoda, T., Tokumotot, T., Hoshi, K., and Yokota, S., Possible function of caudal nuclear pocket: degradation of nucleoproteins by ubiquitin-proteasome system in rat spermatids and human sperm, J. Íistochem. Cytochem., 2007, vol. 55, pp. 585–595.

    Article  CAS  Google Scholar 

  • Johnston, J.A., Ward, C.L., and Kopito, R.R., Aggresomes: a cellular response of misfolded proteins, J. Cell Biol., 1998, vol. 143, pp. 1883–1909.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kerr, J.F.R., Wyllie, A.H., and Currie, A.R., Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics, Br. H.J. Cancer., 1972, vol. 26, pp. 239–257.

    Article  CAS  Google Scholar 

  • Kopito, R.R. and Sitia, R., Aggresomes and Russell bodies. Symptoms of cellular ingestion?, EMBO Rep., 2000, vol. 1, pp. 225–231.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kotaja, N., and Sassone-Corsi, P., The chromatoid body: a germ-cell-specific RNA-processing centre, Nat. Rev. Mol. Cell Biol., 2007, vol. 8, pp. 85–90.

    Article  CAS  PubMed  Google Scholar 

  • Livinskaya, V.A., Ivanov, V.A., Fedorova, O.A., Vorontsova, D.N., Barlev, N.A., and Nikiforov, A.A., Polyclonal antibodies against human proteasome subunits PSMA3, PSA5, and PSMB5, Hibridoma, 2012, vol. 31, pp. 272–278.

    Article  CAS  Google Scholar 

  • Maghsoudi, N., Zakeri, Z., and Lockshin, R.A., Programmed cell death and apoptosis-where it came from and where it is going: from Elie Metchnikoff to the control of caspases, Exp. Oncol., 2012, vol. 34, pp. 146–152.

    CAS  PubMed  Google Scholar 

  • Meikar, O., Da, Ros, M., Liljenback, H., Toppari, J., and Kotaja, N., Accumulation of PiRNAs in the chromatoid bodies purified by a novel isolation protocol, Exp. Cell Res., 2010, vol. 316, pp. 1567–1575.

    Article  CAS  PubMed  Google Scholar 

  • Mironov, A.A., Komissarchik, Ya.Yu., and Mironov, V.A., Metody elektronnoi mikroskopii v biologii i meditsine (Methods of Electron Microscopy in Biology and Medicine), St. Petersburg: Nauka, 1994.

    Google Scholar 

  • Mita, P., De, Luca, A., Abbro, L., and Dini, L., Ultrastructural analysis of apoptosis U937 cells conditioned medium, Italian J. Zool., 2003, vol. 70, pp. 141–146.

    Article  Google Scholar 

  • Mosevitsky, M.I., Snigirevskaya, E.S., and Komissarchik, Ya.Yu., Immunoelectron microscopic study of BUSP1 and MARCKS location in the early and late spermatids, Acta Histochem., 2012, vol. 114, pp. 237–243.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee, S. and Shields, D., Nuclear import is required for the pro-apoptotic function of the golgi protein P115, J. Biol. Chem., 2009, vol. 284, pp. 1709–1717.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Offen, D., Ziv, I., Gorodin, S., Barzilai, A., Malik, Z., and Melamed, E., Dopamine-induced programmed cell death in mouse thymocytes, Biochim. Biophys. Acta, 1995, vol. 1268, pp. 171–177.

    Article  PubMed  Google Scholar 

  • Portt, L., Norman, G., Clapp, C., Greenwood, M., and Greenwood, M.T., Anti-apoptosis and cell survival: a review, Biochim. Biophys. Acta, 2011, vol. 1813, pp. 238–259.

    Article  CAS  PubMed  Google Scholar 

  • Salido, M., Vilches, J., and Roomans, G.M., Changes in elemental concentrations in LNCaP cells are associated with a protective effect of neuropeptides on etoposide-induced apoptosis, Cell Biol. Int., 2004, vol. 28, pp. 397–402.

    Article  CAS  PubMed  Google Scholar 

  • Samm, N., Werner, K., Felix, Rückert, Saege, H.D., and Grützmann, R., and Pilarsky, C., The role of apoptosis in the pathology of pancreatic cancer, Cancers, 2011, vol. 3, pp. 1–16.

    Article  PubMed Central  CAS  Google Scholar 

  • Saraste, A. and Pulkki, K., Morphological and biochemical hallmarks of apoptosis, Cardiovasc. Res., 2000, vol. 45, pp. 528–537.

    Article  CAS  PubMed  Google Scholar 

  • Scovassi, A.I. and Torriglia, A., Activation of DNA-degrading enzymes during apoptosis, Eur. J. Histochem., 2003, vol. 47, pp. 185–194.

    Article  CAS  PubMed  Google Scholar 

  • Shirokova, A.V., Apoptosis. Signal pathways and changes of cell ion and water balance, Tsitologiia, 2007, vol. 49, no. 5, pp. 385–394.

    CAS  PubMed  Google Scholar 

  • Sixt, S.U. and Peters, J., Extracellular alveolar proteasomes. Possible role in lung injury and repair, Proc. Am. Thorac. Soc., 2010, vol. 7, pp. 91–96.

    Article  PubMed  Google Scholar 

  • Skepper, J.N., Karydis, I., Garnett, M.R., Hegyi, L., Hardwick, S.J., Warley, A., Michinson, M.J., and Cary, N.R.B., Changes in elemental concentrations are associated with early stages of apoptosis in human monocyte-macrophages exposed to oxidized low-density lipoprotein: an X-ray microanalytical study, J. Pathol., 1999, vol. 188, pp. 100–106.

    Article  CAS  PubMed  Google Scholar 

  • Snigirevskaya, E.S. and Komissarchik, Ya.Yu., In situ electron microscopic detection of proteasomes in apoptotic U937 cells, Dokl. Biol. Sci., 2014, vol. 454, pp. 633–636.

    Article  Google Scholar 

  • Snigirevskaya, E.S., Mosevitsky, M.I., and Komissarchik, Ya.Yu., The role of chromatoid bodies and cytoskeleton in differentiation of rat spermatozoids, Cell Tissue Biol., 2012, vol. 6, no. 3, pp. 254–267.

    Article  Google Scholar 

  • Taylor, J.P., Tanaka, F., Robitschek, J., Sandoval, C.M., Taye, A., Markovic-Plese, S., and Fischbeck, K.H., Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein, Human Mol. Genetics, 2003, vol. 12, pp. 749–757.

    Article  CAS  Google Scholar 

  • Vasileva, A., Tiedau, D., Firooznia, A., Müller-Reichert, T., and Jessberger, R., Tdrd6 is required for spermiogenesis, chromatoid body architecture, and regulation of MiRNA expression, Curr. Biol., 2009, vol. 19, pp. 630–639.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vereninov, A.A., Goryachaya, T.S., Matveev, V.V., Moshkov, A.V., Rozanov, Yu.M., Sakuta, G.A., Shirokova, A.V., and Yurinskaya, V.E., Dehydration shrinkage of cell volume under apoptosis is not obligatory. Apoptosis of U937 cells induced by staurosporin and etoposide, Tsytologiia, 2004, vol. 46, no. 7, pp. 609–619.

    CAS  Google Scholar 

  • Wójcik, C. and DeMartino, G.N., Intracellular localization of proteasomes, Intern. J. Biochem. Cell Biol., 2003, vol. 35, pp. 579–589.

    Article  Google Scholar 

  • Wyllie, A.H., Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation, Nature, 1980, vol. 284, pp. 555–556.

    Article  CAS  PubMed  Google Scholar 

  • Yokota, S., Historical survey on chromatoid body research, Acta Histochem. Cytochem., 2008, vol. 41, pp. 65–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yurinskaya, V.E, Goryachaya, T.S., Guzhova, I., Moshkov, A.V., Rozanov, Y.M., Sakuta, G.A., Shirokova, A.V., Shumilina, E., Vassilieva, I., Lang, F., and Vereninov, A.A., Potassium and sodium balance in U937 cells during apoptosis with and without cell shrinkage, Cell Physiol. Biochem., 2005a, vol. 16, pp. 155–162.

    Article  CAS  PubMed  Google Scholar 

  • Yurinskaya, V.E., Moshkov, A.V., Rozanov, Y.M., Shirokova, A.V., Vassilieva, I.O., Shumilina, E.V., Lang, F., Volgareva, E.V., and Vereninov, A.A., Thymocyte K+, Na+ and water balance during dexamethasone- and etoposide-induced apoptosis, Cell Physiol. Biochem., 2005b, vol. 16, pp. 15–22.

    Article  CAS  PubMed  Google Scholar 

  • Yurinskaya, V.E., Rubashkin, A.A., Shirokova, A.V., and Vereninov, A.A., Regulatory volume increase (RVI) and apoptotic volume decrease (AVD) in U937 cells in hypertonic medium, Cell Tissue Biol., 2011, vol. 5, no. 5, pp. 487–494.

    Article  Google Scholar 

  • Yurinskaya, V.E., Moshkov, A.V., Wibberley, A.V., Lang, F., Model, M.A., and Vereninov, A.A., Dual response of human leukemia U937 cells to hypertonic shrinkage: initial regulatory volume increase (RVI) and delayed apoptotic volume decrease (AVD), Cell Physiol. Biochem., 2012, vol. 30, pp. 964–973.

    Article  CAS  PubMed  Google Scholar 

  • Zoeger, A., Blau, M., Egerer, K., Feist, E., and Dahlmann, B.., Circulating proteasomes are functional and have a subtype pattern distinct from 20S proteasomes in major blood cells, Clinical Chem., 2006, vol. 52, pp. 2079–2086.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. Yu. Komissarchik.

Additional information

Original Russian Text © E.S. Snigirevskaya, A.V. Moshkov, V.E. Yurinskaya, A.A. Vereninov, Ya.Yu. Komissarchik, 2014, published in Tsitologiya, 2014, Vol. 56, No. 11, pp. 828–840.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snigirevskaya, E.S., Moshkov, A.V., Yurinskaya, V.E. et al. Ultrastructural and X-ray microanalysis of U-937 cells in hypertonia-induced apoptosis. Cell Tiss. Biol. 9, 96–109 (2015). https://doi.org/10.1134/S1990519X15020091

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X15020091

Keywords

Navigation