Skip to main content
Log in

LES of Subsonic Reacting Mixing Layers

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

We study a class of chemically reacting, spatially evolving, subsonic mixing layers via large eddy simulations (LES). A primary goal is to assess the inflow conditions, numerical methods, and physical models requirement to reproduce experimental results on molecular mixing and effects of inflow conditions in high-Reynolds number mixing layers: here, we target experiments performed by Slessor et al. (J. Fluid Mech. 376, 115–138 1998). The streams forming the mixing layer carry small amounts of hydrogen and fluorine, initiating a hypergolic reaction upon mixing at large Damköhler number. In this regime, product formation and temperature rise in the flow is mixing limited. The chemical compositions considered for this study correspond to low levels of heat release and results in adiabatic flame temperature rise of 171K and 267K. Both reacting and non-reacting simulations are performed with the Vreman sub-grid scale model (Vreman Phys. Fluids 16(10), 3670–3681 2004). A grid resolution study is done and comparisons are made with the available experimental data. To mitigate dispersive errors and ensure boundedness in species mass fractions that occur in simulations of non-premixed combustion, non-linear scaling limiters are used for reconstructing species densities during flux evaluation. The simulations show good agreement of the velocity and temperature rise profiles with experiment, and reveal differences in the flow field attributed to changes in the inflow conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Slessor, M., Bond, C., Dimotakis, P.: Turbulent shear-layer mixing at high Reynolds numbers: Effects of inflow conditions. J. Fluid Mech. 376, 115–138 (1998)

    MATH  Google Scholar 

  2. Vreman, A.: An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Phys. Fluids 16(10), 3670–3681 (2004)

    MATH  Google Scholar 

  3. Koochesfahani, M., Dimotakis, P.: Mixing and chemical reactions in a turbulent liquid mixing layer. J. Fluid Mech. 170, 83–112 (1986)

    Google Scholar 

  4. Clemens, N., Mungal, M.: Large-scale structure and entrainment in the supersonic mixing layer. J. Fluid Mech. 284, 171–216 (1995)

    Google Scholar 

  5. Clemens, N., Paul, P.: Scalar measurements in compressible axisymmetric mixing layers. Phys. Fluids 7(5), 1071–1081 (1995)

    Google Scholar 

  6. Island, T.C.: Quantitative Scalar Measurements and Mixing Enhancement in Compressible Shear Layers. Ph.D. thesis, Stanford University (1997)

  7. Winant, C.D., Browand, F.K.: Vortex pairing: The mechanism of turbulent mixing-layer growth at moderate Reynolds number. J. Fluid Mech. 63(02), 237–255 (1974)

    Google Scholar 

  8. Brown, G.L., Roshko, A.: On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64(04), 775–816 (1974)

    MATH  Google Scholar 

  9. Roshko, A.: Structure of turbulent shear flows: A new look. AIAA J. 14(10), 1349–1357 (1976)

    Google Scholar 

  10. Dimotakis, P.E., Brown, P.: The mixing layer at high Reynolds number- large-structure dynamics and entrainment. J. Fluid Mech. 78(3), 535–560 (1976)

    Google Scholar 

  11. Hernan, M.A., Jimenez, J.: Computer analysis of a high-speed film of the plane turbulent mixing layer. J. Fluid Mech. 119, 323–345 (1982)

    Google Scholar 

  12. Konrad, J.H.: An experimental investigation of mixing in two-dimensional turbulent shear flows with applications to diffusion-limited chemical reactions, Ph.D. thesis, California Institute of Technology (1977)

  13. Breidenthal, R.: Structure in turbulent mixing layers and wakes using a chemical reaction. J. Fluid Mech. 109, 1–24 (1981)

    Google Scholar 

  14. Bernal, L., Roshko, A.: Streamwise vortex structure in plane mixing layers. J. Fluid Mech. 170, 499–525 (1986)

    Google Scholar 

  15. Liepmann, D., Gharib, M.: The role of streamwise vorticity in the near-field entrainment of round jets. J. Fluid Mech. 245, 643–668 (1992)

    Google Scholar 

  16. Clemens, N., Mungal, M.: Two-and three-dimensional effects in the supersonic mixing layer. AIAA J. 30(4), 973–981 (1992)

    Google Scholar 

  17. Samimy, M., Reeder, M., Elliott, G.: Compressibility effects on large structures in free shear flows. Phys. Fluids A: Fluid Dyn. 4, 1251 (1992)

    Google Scholar 

  18. Elliott, G.S., Samimy, M., Arnette, S.A.: Study of compressible mixing layers using filtered rayleigh scattering based visualizations. AIAA J. 30(10), 2567–2569 (1992)

    Google Scholar 

  19. Dimotakis, P.E.: Two-dimensional shear-layer entrainment. AIAA J. 24(11), 1791–1796 (1986)

    Google Scholar 

  20. Koochesfahani, M., Dimotakis, P., Broadwell, J.: A’flip’experiment in a chemically reacting turbulent mixing layer. AIAA J. 23(8), 1191–1194 (1985)

    Google Scholar 

  21. Mungal, M., Dimotakis, P.: Mixing and combustion with low heat release in a turbulent shear layer. J. Fluid Mech. 148, 349–382 (1984)

    Google Scholar 

  22. Broadwell, J.E., Mungal, M.G.: Large-scale structures and molecular mixing. Phys. Fluids A: Fluid Dyn. 3(5), 1193–1206 (1991)

    Google Scholar 

  23. Hermanson, J., Dimotakis, P.: Effects of heat release in a turbulent, reacting shear layer. J. Fluid Mech. 199, 333–375 (1989)

    Google Scholar 

  24. Hall, J.L.: An experimental investigation of structure, mixing and combustion in compressible turbulent shear layers, Ph.D. thesis, California Institute of Technology (1991)

  25. Dimotakis, P.: Turbulent free shear layer mixing and combustion. Prog. Astronaut. Aeronaut. 137, 265–340 (1991)

    Google Scholar 

  26. Day, M., Mansour, N., Reynolds, W.: Nonlinear stability and structure of compressible reacting mixing layers. J. Fluid Mech. 446, 375–408 (2001)

    MathSciNet  MATH  Google Scholar 

  27. Miller, M., Bowman, C., Mungal, M.: An experimental investigation of the effects of compressibility on a turbulent reacting mixing layer. J. Fluid Mech. 356, 25–64 (1998)

    Google Scholar 

  28. Ferrer, P.J.M., Lehnasch, G., Mura, A.: Compressibility and heat release effects in high-speed reactive mixing layers i.: Growth rates and turbulence characteristics. Combust. Flame 180, 284–303 (2017)

    Google Scholar 

  29. Bradshaw, P.: The effect of initial conditions on the development of a free shear layer. J. Fluid Mech. 26(02), 225–236 (1966)

    Google Scholar 

  30. Chandrsuda, C., Mehta, R.D., Weir, A., Bradshaw, P.: Effect of free-stream turbulence on large structure in turbulent mixing layers. J. Fluid Mech. 85(4), 693–704 (1978)

    Google Scholar 

  31. Bell, J.H., Mehta, R.D.: Development of a two-stream mixing layer from tripped and untripped boundary layers. AIAA J. 28(12), 2034–2042 (1990)

    Google Scholar 

  32. Goebel, S., Dutton, J., Krier, H., Renie, J.: Mean and turbulent velocity measurements of supersonic mixing layers. Exp. Fluids 8(5), 263–272 (1990)

    Google Scholar 

  33. Moser, R.D., Rogers, M.M.: The three-dimensional evolution of a plane mixing layer: pairing and transition to turbulence. J. Fluid Mech. 247(1), 275 (1993)

    MATH  Google Scholar 

  34. Rogers, M.M., Moser, R.D.: Direct simulation of a self-similar turbulent mixing layer. Phys. Fluids (1994-present) 6(2), 903–923 (1994)

    MATH  Google Scholar 

  35. Sandham, N., Reynolds, W.: Three-dimensional simulations of large eddies in the compressible mixing layer. J. Fluid Mech. 224(1), 133–158 (1991)

    MATH  Google Scholar 

  36. Luo, K., Sandham, N.: On the formation of small scales in a compressible mixing layer. In: Direct and Large-Eddy Simulation I, pp 335–346. Springer (1994)

  37. Sarkar, S.: The stabilizing effect of compressibility in turbulent shear flow. J. Fluid Mech. 282, 163–186 (1995)

    MATH  Google Scholar 

  38. Freund, J.B., Lele, S.K., Moin, P.: Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate. J. Fluid Mech. 421, 229–267 (2000)

    MathSciNet  MATH  Google Scholar 

  39. Pantano, C., Sarkar, S.: A study of compressibility effects in the high-speed turbulent shear layer using direct simulation. J. Fluid Mech. 451(1), 329–371 (2002)

    MATH  Google Scholar 

  40. Pantano, C., Sarkar, S., Williams, F.: Mixing of a conserved scalar in a turbulent reacting shear layer. J. Fluid Mech. 481, 291–328 (2003)

    MATH  Google Scholar 

  41. Sharma, R.B., Lele, S.: Large-eddy simulation of supersonic, turbulent mixing layers downstream of a splitter plate. In: 49th Aerospace Sciences Meeting and Exhibit, Orlando, Florida, AIAA Paper 2011–208 (2011)

  42. McMullan, W.A.: Spanwise domain effects on the evolution of the plane turbulent mixing layer. Int. J. Comput. Fluid Dyn. 29(6-8), 333–345 (2015)

    MathSciNet  Google Scholar 

  43. Dimotakis, P.E.: Turbulent mixing. Annu. Rev. Fluid Mech. 37, 329–356 (2005)

    MathSciNet  MATH  Google Scholar 

  44. McMullan, W.A., Gao, S., Coats, C.M.: Organised large structure in the post-transition mixing layer. Part 2. Large-Eddy simulation. J. Fluid Mech. 762, 302–343 (2015)

    MathSciNet  Google Scholar 

  45. Delarue, B., Pope, S.: Calculations of subsonic and supersonic turbulent reacting mixing layers using probability density function methods. Phys. Fluids 10, 487 (1998)

    MathSciNet  MATH  Google Scholar 

  46. Sheikhi, M., Givi, P., Pope, S.: Velocity-scalar filtered mass density function for Large Eddy simulation of turbulent reacting flows. Phys. Fluids 19(9), 095106 (2007)

    MATH  Google Scholar 

  47. Ferrer, P.J.M., Lehnasch, G., Mura, A.: Compressibility and heat release effects in high-speed reactive mixing layers ii. Structure of the stabilization zone and modeling issues relevant to turbulent combustion in supersonic flows. Combust. Flame 180, 304–320 (2017)

    Google Scholar 

  48. Ferrero, P., Kartha, A., Subbareddy, P.K., Candler, G.V., Dimotakis, P.E.: LES of a high-reynolds number, chemically reacting mixing layer, AIAA Paper

  49. Ferrero, P.: A Stochastic Particle Method for the Investigation of Turbulence/Chemistry Interactions in Large-Eddy Simulations of Turbulent Reacting Flows. Ph.D. thesis, University of Minnesota (2013)

  50. Matheou, G., Dimotakis, P.E.: Scalar excursions in Large-Eddy simulations. J. Comput. Phys. 327, 97–120 (2016)

    MathSciNet  MATH  Google Scholar 

  51. Subbareddy, P.K., Kartha, A., Candler, G.V.: Scalar conservation and boundedness in simulations of compressible flow. J. Comput. Phys. 348, 827–846 (2017)

    MathSciNet  MATH  Google Scholar 

  52. Kartha, C.A.V.: LES of High-Re Reacting Flows: Active Scalar Conservation and Boundedness. Ph.D. thesis, University of Minnesota (2018)

  53. Martin, M.P., Piomelli, U., Candler, G.V.: Subgrid-scale models for compressible large-eddy simulations. Theor. Comput. Fluid Dyn. 13(5), 361–376 (2000)

    MATH  Google Scholar 

  54. Gicquel, L.Y., Staffelbach, G., Poinsot, T.: Large eddy simulations of gaseous flames in gas turbine combustion chambers. Prog. Energy Combust. Sci. 38(6), 782–817 (2012)

    Google Scholar 

  55. Candler, G.V., Johnson, H.B., Nompelis, I., Gidzak, V.M., Subbareddy, P.K., Barnhardt, M.: Development of the us3d code for advanced compressible and reacting flow simulations. In: 53rd AIAA Aerospace Sciences Meeting, p. 1893 (2015)

  56. Subbareddy, P.K., Candler, G.V., fully discrete, A: kinetic energy consistent finite-volume scheme for compressible flows. J. Comput. Phys. 228(5), 1347–1364 (2009)

    MathSciNet  MATH  Google Scholar 

  57. Bartkowicz, M.D., Subbareddy, P.K., Candler, G.V.: Numerical simulations of roughness induced instability in the purdue mach 6 wind tunnel, AIAA paper 4723

  58. Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C., Poinsot, T.: Large-eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152(2), 517–549 (1999)

    MATH  Google Scholar 

  59. Mavriplis, D.J.: Revisiting the least-squares procedure for gradient reconstruction on unstructured meshes. AIAA paper 3986 (2003)

  60. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    MathSciNet  MATH  Google Scholar 

  61. Kaps, P., Rentrop, P.: Generalized Runge-Kutta methods of order four with stepsize control for stiff ordinary differential equations. Numer. Math. 33(1), 55–68 (1979)

    MathSciNet  MATH  Google Scholar 

  62. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3), 506–517 (1968)

    MathSciNet  MATH  Google Scholar 

  63. Sportisse, B.: An analysis of operator splitting techniques in the stiff case. J. Comput. Phys. 161(1), 140–168 (2000)

    MathSciNet  MATH  Google Scholar 

  64. Mungal, M., Frieler, C.: The effects of Damköhler number in a turbulent shear layer. Combust. Flame 71(1), 23–34 (1988)

    Google Scholar 

  65. Pitsch, H.: Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38, 453–482 (2006)

    MathSciNet  MATH  Google Scholar 

  66. Fureby, C.: LES for supersonic combustion. AIAA Paper 5979 (2012)

  67. Magnussen, B.F.: The Eddy dissipation concept—a bridge between science and technology. In: ECCOMAS Thematic Conference on Computational Combustion, pp. 21–24 (2005)

  68. Sabelnikov, V., Fureby, C.: LES combustion modeling for high re flames using a multi-phase analogy. Combust. Flame 160(1), 83–96 (2013)

    Google Scholar 

  69. Moule, Y., Sabelnikov, V., Mura, A.: Highly resolved numerical simulation of combustion in supersonic hydrogen–air coflowing jets. Combust. Flame 161(10), 2647–2668 (2014)

    Google Scholar 

  70. Fulton, J.A., Edwards, J.R., Cutler, A.D., McDaniel, J.C., Goyne, C.P.: Turbulence/chemistry interactions in a ramp-stabilized supersonic hydrogen-air diffusion flame. In: 52nd Aerospace Sciences Meeting, p. 0627 (2014)

  71. Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or Large Eddy simulations. J. Comput. Phys. 186(2), 652–665 (2003)

    MATH  Google Scholar 

  72. Xie, Z.-T., Castro, I.P.: Efficient generation of inflow conditions for large eddy simulation of street-scale flows. Flow Turbul. Combust. 81(3), 449–470 (2008)

    MATH  Google Scholar 

  73. Touber, E., Sandham, N.D.: Large-Eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theor. Comput. Fluid Dyn. 23(2), 79–107 (2009)

    MATH  Google Scholar 

  74. Pirozzoli, S., Bernardini, M.: Turbulence in supersonic boundary layers at moderate Reynolds number. J. Fluid Mech. 688, 120–168 (2011)

    MathSciNet  MATH  Google Scholar 

  75. Bonanos, A.M., Bergthorson, J.M., Dimotakis, P.E.: Mixing measurements in a supersonic expansion-ramp combustor. Flow Turbul. Combust. 80(4), 489–506 (2008)

    Google Scholar 

  76. Poinsot, T.J., Lele, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101(1), 104–129 (1992)

    MathSciNet  MATH  Google Scholar 

  77. Baum, M., Poinsot, T., Thévenin, D.: Accurate boundary conditions for multicomponent reactive flows. J. Comput. Phys. 116(2), 247–261 (1995)

    MATH  Google Scholar 

  78. Bond, C.L.: Reynolds Number Effects on Mixing in the Turbulent Shear Layer, Ph.D. thesis, California Institute of Technology (1999)

  79. Corcos, G., Lin, S.: The mixing layer: Deterministic models of a turbulent flow. Part 2. The origin of the three-dimensional motion. J. Fluid Mech. 139, 67–95 (1984)

    MATH  Google Scholar 

  80. D’Ovidio, A., Coats, C.: Organized large structure in the post-transition mixing layer. Part 1. Experimental evidence. J. Fluid Mech. 737, 466–498 (2013)

    MATH  Google Scholar 

  81. Pickett, L.M., Ghandhi, J.B.: Passive scalar mixing in a planar shear layer with laminar and turbulent inlet conditions. Phys. Fluids 14(3), 985–998 (2002)

    Google Scholar 

  82. Dimotakis, P.E., Miller, P.L.: Some consequences of the boundedness of scalar fluctuations. Phys.of Fluids A: Fluid Dyn. 2(11), 1919–1920 (1990)

    MATH  Google Scholar 

  83. Huang, L.-S., Ho, C.-M.: Small-scale transition in a plane mixing layer. J. Fluid Mech. 210, 475–500 (1990)

    Google Scholar 

  84. Masutani, S., Bowman, C.: The structure of a chemically reacting plane mixing layer. J. Fluid Mech. 172, 93–126 (1986)

    Google Scholar 

  85. Matheou, G., Bonanos, A.M., Pantano, C., Dimotakis, P.E.: Large-eddy simulation of mixing in a recirculating shear flow. J. Fluid Mech. 646, 375–414 (2010)

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the reviewers for their constructive comments and suggestions that helped to improve the manuscript. We would also like to thank Prof. Paul E. Dimotakis, Drs. Pietro Ferrero and Jefferey Komives for constructive discussions during the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Kartha.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was sponsored by the Air Force Office of Scientific Research under AFOSR grants FA9550-12-1-0064 and FA9550-12-1-0461. The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the AFOSR or the U.S. Government.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kartha, A., Subbareddy, P.K. & Candler, G.V. LES of Subsonic Reacting Mixing Layers. Flow Turbulence Combust 104, 947–976 (2020). https://doi.org/10.1007/s10494-019-00066-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-019-00066-4

Keywords

Navigation