Skip to main content
Log in

A new framework for simulating forced homogeneous buoyant turbulent flows

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

This work proposes a new simulation methodology to study variable density turbulent buoyant flows. The mathematical framework, referred to as homogeneous buoyant turbulence, relies on a triply periodic domain and incorporates numerical forcing methods commonly used in simulation studies of homogeneous, isotropic flows. In order to separate the effects due to buoyancy from those due to large-scale gradients, the linear scalar forcing technique is used to maintain the scalar variance at a constant value. Two sources of kinetic energy production are considered in the momentum equation, namely shear via an isotropic forcing term and buoyancy via the gravity term. The simulation framework is designed such that the four dimensionless parameters of importance in buoyant mixing, namely the Reynolds, Richardson, Atwood, and Schmidt numbers, can be independently varied and controlled. The framework is used to interrogate fully non-buoyant, fully buoyant, and partially buoyant turbulent flows. The results show that the statistics of the scalar fields (mixture fraction and density) are not influenced by the energy production mechanism (shear vs. buoyancy). On the other hand, the velocity field exhibits anisotropy, namely a larger variance in the direction of gravity which is associated with a statistical dependence of the velocity component on the local fluid density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cook A.W., Cabot W., Miller P.L.: The mixing transition in Rayleigh–Taylor instability. J. Fluid Mech. 511, 333–362 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cabot W.H., Cook A.W: Reynolds number effects on Rayleigh–Taylor instability with possible implications for type Ia supernovae. Nat. Phys. 2, 562–568 (2006)

    Article  Google Scholar 

  3. Livescu D., Ristorcelli J.R.: Variable-density mixing in buoyancy-driven turbulence. J. Fluid Mech. 605, 145–180 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Livescu D., Ristorcelli J.R., Gore R.A., Dean SH., Cabot W.H., Cook A.W.: High-Reynolds number Rayleigh–Taylor turbulence. J. Turbul. 10, N13 (2009)

    Article  MathSciNet  Google Scholar 

  5. Livescu D., Ristorcelli J.R., Petersen M.R., Gore R.A.: New phenomena in variable-density Rayleigh–Taylor turbulence. Phys. Scr. T142, 014015 (2010)

    Article  Google Scholar 

  6. Livescu D., Ristorcelli J.R.: Buoyancy-driven variable-density turbulence. J. Fluid Mech. 591, 43–71 (2007)

    Article  MATH  Google Scholar 

  7. Chung D., Pullin D.I.: Direct numerical simulation and large-eddy simulation of stationary buoyancy-driven turbulence. J. Fluid Mech. 643, 279–308 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Batchelor G.K., Canuto V.M., Chasnov J.R.: Homogeneous buoyancy-generated turbulence. J. Fluid Mech. 235, 349–378 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Alvelius K.: Random forcing of three-dimensional homogeneous turbulence. Phys. Fluids 11, 1880–1889 (1999)

    Article  MATH  Google Scholar 

  10. Lundgren T.S.: Linearly-forced isotropic turbulence. Annu. Res. Briefs Cent. Turbul. Res. 2, 461–473 (2003)

    Google Scholar 

  11. Rosales C., Meneveau C.: Linear forcing in numerical simulations of isotropic turbulence: physical space implementations and convergence properties. Phys. Fluids 17, 095106 (2005)

    Article  MathSciNet  Google Scholar 

  12. Eswaran V., Pope S.B.: An examination of forcing in direct numerical simulations of turbulence. Comput. Fluids 16, 257–278 (1988)

    Article  MATH  Google Scholar 

  13. Eswaran V., Pope S.B.: Direct numerical simulations of the turbulent mixing of a passive scalar. Phys. Fluids 31, 506–520 (1988)

    Article  Google Scholar 

  14. Yeung P.K.: Lagrangian characteristics of turbulence and scalar transport in direct numerical simulations. J. Fluid Mech. 427, 241–274 (2001)

    Article  MATH  Google Scholar 

  15. Donzis D.A., Sreenivasan K.R., Yeung P.K.: The Batchelor spectrum for mixing of passive scalars in isotropic turbulence. Flow Turbul. Combust. 85, 549–566 (2010)

    Article  MATH  Google Scholar 

  16. Watanabe T., Gotoh T.: Statistics of a passive scalar in homogeneous turbulence. New J. Phys. 6, 40 (2004)

    Article  Google Scholar 

  17. Gotoh T., Hatanaka S., Miura H.: Spectral compact difference hybrid computation of passive scalar in isotropic turbulence. J. Comput. Phys. 231, 7398–7414 (2012)

    Article  MathSciNet  Google Scholar 

  18. Livescu D.: Numerical simulations of two-fluid turbulent mixing at large density ratios and applications to the Rayleigh–Taylor instability. Philos. Trans. R. Soc. A 371, 20120185 (2013)

    Article  MathSciNet  Google Scholar 

  19. Majda, A.: Compressible fluid flow and systems of conservation laws in several space variables. Appl. Math. Sci. 53, pp. 72–79 (1984)

  20. Majda A., Sethian J.A.: Derivation and numerical solution of the equations of low Mach number combustion. Combust. Sci. Technol. 42, 185–205 (1985)

    Article  Google Scholar 

  21. Desjardins O., Blanquart G., Balarac G., Pitsch H.: High order conservative finite difference scheme for variable density low Mach number turbulent flows. J. Comput. Phys. 227, 7125–7159 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Haworth D.C.: Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36, 168–259 (2010)

    Article  Google Scholar 

  23. Almgren, A., Bell, J., Nonaka, A., Zingale, M.: Low Mach number modeling of stratified flows. In: Finite Volumes for Complex Applications VII—Methods and Theoretical Aspects, Springer Proceedings in Mathematics & Statistics, vol. 77. Springer, Berlin (2014)

  24. Soulard O., Griffond J., Grea B.-J.: Large-scale analysis of self-similar unstably stratified homogeneous turbulence. Phys. Fluids 26, 015110 (2014)

    Article  Google Scholar 

  25. Carroll P.L., Blanquart G.: A proposed modification to Lundgren’s physical space velocity forcing method for isotropic turbulence. Phys. Fluids 25, 105114 (2013)

    Article  Google Scholar 

  26. Carroll P.L., Verma S., Blanquart G.: A novel forcing technique to simulate turbulent mixing in a decaying scalar field. Phys. Fluids 25, 095102 (2013)

    Article  Google Scholar 

  27. Mydlarski L., Warhaft Z.: On the onset of high-Reynolds-number grid-generated wind tunnel turbulence. J. Fluid Mech. 320, 331–368 (1996)

    Article  Google Scholar 

  28. Carroll P.L., Blanquart G.: The effect of velocity field forcing techniques on the Karman–Howarth equation. J. Turbul. 15, 429–448 (2014)

    Article  MathSciNet  Google Scholar 

  29. Vallis G.K.: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, New York (2006)

    Book  Google Scholar 

  30. Morinishi Y., Vasilyev O.V., Ogi T.: Fully conservative finite difference scheme in cylindrical coordinates for incompressible flow simulations. J. Comput. Phys. 197, 686–710 (2004)

    Article  MATH  Google Scholar 

  31. Harlow F.H., Welch J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182–2189 (1965)

    Article  MATH  Google Scholar 

  32. Kim J., Moin P.: Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308–323 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  33. Pierce, C.D., Moin, P.: Progress-variable approach for large eddy simulation of turbulent combustion. Ph.D. thesis. Rep. TF80, Flow Physics and Computation Division, Dept. Mech. Eng. Stanford Univ. (2001)

  34. Savard, B., Xuan, Y., Bobbitt, B., Blanquart, G.: A computationally-efficient, semi-implicit, iterative method for the time-integration of reacting flows with stiff chemistry. J. Comput. Phys. (2015). doi:10.1016/j.jcp.2015.04.018

  35. Nourgaliev R.R., Theofanous T.G.: High-fidelity interface tracking in compressible flows: unlimited anchored adaptive level set. J. Comput. Phys. 224, 836–866 (2007)

    Article  MATH  Google Scholar 

  36. Pope S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Blanquart.

Additional information

Communicated by Sutanu Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carroll, P.L., Blanquart, G. A new framework for simulating forced homogeneous buoyant turbulent flows. Theor. Comput. Fluid Dyn. 29, 225–244 (2015). https://doi.org/10.1007/s00162-015-0350-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-015-0350-0

Keywords

Navigation