Skip to main content
Log in

Direct Numerical Simulation of Turbulent Flow in a Circular Pipe Subjected to Radial System Rotation

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Direct numerical simulations have been performed with a high-order spectral element method computer code to investigate the Coriolis force effect on a fully-developed turbulent flow confined within a circular pipe subjected to radial system rotations. In order to study the radially rotating effects on the flow, a wide range of rotation numbers (Roτ) have been tested. In response to the system rotation imposed, large-scale secondary flows appear as streamwise counter-rotating vortices, which highly interact with the boundary layer and have a significant impact on the turbulent flow structures and dynamics. A quasi Taylor-Proudman region occurs at low rotation numbers, where the mean axial velocity is invariant along the rotating axis. As the rotation number increases, laminarization occurs near the bottom wall of the pipe, and the flow becomes fully laminarized when the rotation number approaches Roτ = 1.0. The characteristics of the flow field are investigated in both physical and spectral spaces, which include the analyses of the first- and second-order statistical moments, pre-multiplied spectra of velocity fluctuations, budget balance of the transport equation of Reynolds stresses, and coherent flow structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Belhoucine, L., Deville, M., Elazehari, A.R., Bensalah, M.O.: Explicit algebraic Reynolds stress model of incompressible turbulent flow in rotating square duct. Comput. Fluids 33(2), 179–199 (2004)

    Article  Google Scholar 

  2. Kristoffersen, R., Andersson, H.I.: Direct simulations of low-Reynolds-number turbulent flow in a rotating channel. J Fluid Mech. 256, 163–197 (1993)

    Article  Google Scholar 

  3. Grundestam, O., Wallin, S., Johansson, A.V.: Direct numerical simulations of rotating turbulent channel flow. J. Fluid Mech. 598, 177–199 (2008)

    Article  MathSciNet  Google Scholar 

  4. Wallin, S., Grundestam, O., Johansson, A.V.: Laminarization mechanisms and extreme-amplitude states in rapidly rotating plane channel flow. J. Fluid Mech. 730, 193–219 (2013)

    Article  MathSciNet  Google Scholar 

  5. Xia, Z.-H., Shi, Y.-P., Chen, S.-Y.: Direct numerical simulation of turbulent channel flow with spanwise rotation. J. Fluid Mech. 788, 42–56 (2016)

    Article  MathSciNet  Google Scholar 

  6. Pallares, J., Davidson, L.: Large-eddy simulations of turbulent flow in a rotating square duct. Phys. Fluids 12(11), 2878–2894 (2000)

    Article  Google Scholar 

  7. Dai, Y.-J., Huang, W.-X., Xu, C.-X., Cui, G.-X.: Direct numerical simulation of turbulent flow in a rotating square duct. Phys. Fluids 27(6), 065104 (2015)

    Article  Google Scholar 

  8. Fang, X.-J., Yang, Z.-X., Wang, B.-C., Bergstrom, D.J.: Direct numerical simulation of turbulent flow in a spanwise rotating square duct at high rotation numbers. Int. J. Heat Fluid Flow 63, 88–98 (2017)

    Article  Google Scholar 

  9. Narasimhamurthy, V.D., Andersson, H.I.: Turbulence statistics in a rotating ribbed channel. Int. J. Heat Fluid Flow 51, 29–41 (2015)

    Article  Google Scholar 

  10. Xun, Q.-Q., Wang, B.-C.: Hybrid RANS/LES of turbulent flow in a rotating rib-roughened channel. Phys. Fluids 28(7), 075101 (2016)

    Article  Google Scholar 

  11. Coletti, F., Lo Jacono, D., Cresci, I., Arts, T.: Turbulent flow in rib-roughened channel under the effect of Coriolis and rotational buoyancy forces. Phys. Fluids 26(4), 045111 (2014)

    Article  Google Scholar 

  12. Tafti, D., Dowd, C., Tan, X.: High Reynold number LES of a rotating two-pass ribbed duct. Aerospace 5(4), 124 (2018)

    Article  Google Scholar 

  13. Eggels, J., Unger, F., Weiss, M., Westerweel, J., Adrian, R., Friedrich, R., Nieuwstadt, F.: Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J. Fluid Mech. 268, 175–210 (1994)

    Article  Google Scholar 

  14. Wu, X.-H., Moin, P.: A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J. Fluid Mech. 608, 81–112 (2008)

    Article  Google Scholar 

  15. Chin, C., Ooi, A.S.H., Marusic, I., Blackburn, H.M.: The influence of pipe length on turbulence statistics computed from direct numerical simulation data. Phys. Fluids 22(11), 115107 (2010)

    Article  Google Scholar 

  16. Wu, X.-H., Baltzer, J.R., Adrian, R.J.: Direct numerical simulation of a 30R long turbulent pipe flow at R + = 685: Large- and very large-scale motions. J. Fluid Mech. 698, 235–281 (2012)

    Article  MathSciNet  Google Scholar 

  17. Barua, S.N.: Secondary flow in a rotating straight pipe. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 227(1168), 133–139 (1954)

    Article  MathSciNet  Google Scholar 

  18. Ishigaki, H.: Analogy between laminar flows in curved pipes and orthogonally rotating pipes. J. Fluid Mech. 268, 133–145 (1994)

    Article  Google Scholar 

  19. Ishigaki, H.: Analogy between turbulent flows in curved pipes and orthogonally rotating pipes. J. Fluid Mech. 307, 1–10 (1996)

    Article  Google Scholar 

  20. Lei, U., Lin, M.J., Sheen, H.J., Lin, C.M.: Velocity measurements of the laminar flow through a rotating straight pipe. Phys. Fluids 6(6), 1972–1982 (1994)

    Article  Google Scholar 

  21. Blackburn, H.M., Sherwin, S.J.: Formulation of a Galerkin spectral element-Fourier method for three-dimensional incompressible flows in cylindrical geometries. J. Comp Phys. 197(2), 759–778 (2004)

    Article  Google Scholar 

  22. Karniadakis, G.E., Israeli, M., Orszag, S.A.: High-order splitting methods for the incompressible Navier-Stokes equations. J. Comp Phys. 97(2), 414–443 (1991)

    Article  MathSciNet  Google Scholar 

  23. Sharma, R.K., Nandakumar, K.: Multiple, two-dimensional solutions in a rotating straight pipe. Phys. Fluids 7(7), 1568–1575 (1995)

    Article  Google Scholar 

  24. El Khoury, G.K., Schlatter, P., Noorani, A., Fischer, P.F., Brethouwer, G., Johansson, A.V.: Direct numerical simulation of turbulent pipe flow at moderately high Reynolds numbers. Flow Turbul. Combust. 91(3), 475–495 (2013)

    Article  Google Scholar 

  25. Di Liberto, M., Di Piazza, I., Ciofalo, M.: Turbulence structure and budgets in curved pipes. Comput. Fluids 88, 452–472 (2013)

    Article  Google Scholar 

  26. Bolis, A., Cantwell, C.D., Moxey, D., Serson, D., Sherwin, S.J.: An adaptable parallel algorithm for the direct numerical simulation of incompressible turbulent flows using a Fourier spectral/hp element method and MPI virtual topologies. Comput. Phys. Commun. 206, 17–25 (2016)

    Article  MathSciNet  Google Scholar 

  27. Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd edn. Oxford University Press, New York (2005)

    Book  Google Scholar 

  28. Fang, X.-J., Wang, B.-C.: On the turbulent heat transfer in a square duct subjected to spanwise system rotation. Int. J. Heat Fluid Flow 71, 220–230 (2018)

    Article  Google Scholar 

  29. Wagner, C., Hüttl, T.J., Friedrich, R.: Low-Reynolds-number effects derived from direct numerical simulations of turbulent pipe flow. Comput. Fluids 30(5), 581–590 (2001)

    Article  Google Scholar 

  30. Chin, C., Monty, J.P., Ooi, A.: Reynolds number effects in DNS of pipe flow and comparison with channels and boundary layers. Int. J. Heat Fluid Flow 45, 33–40 (2014)

    Article  Google Scholar 

  31. Zhou, J., Adrian, R.J., Balachandar, S., Kendall, T.M.: Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353–396 (1999)

    Article  MathSciNet  Google Scholar 

  32. Johnston, J.P., Halleen, R.M., Lezius, D.K.: Effects of spanwise rotation on the structure of two-dimensional fully developed turbulent channel flow. J. Fluid Mech. 56(3), 533–557 (1972)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Blackburn and Sherwin [21] for making their spectral-element code “Semtex” accessible to the research community. The authors would also like to thank Western Canada Research Grid (WestGrid) for an access to supercomputing and storage facilities. Research funding from Natural Sciences and Engineering Research Council (NSERC) of Canada to B.-C. Wang (grant number: RGPIN/357453-2013) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-Chen Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this appendix, the transport equations of Reynolds stresses (\(\langle u^{\prime }_{z} u^{\prime }_{z}\rangle \), \(\langle u^{\prime }_{r} u^{\prime }_{r}\rangle \), \(\langle u^{\prime }_{z} u^{\prime }_{r}\rangle \) and \(\langle u^{\prime }_{\theta } u^{\prime }_{\theta }\rangle \)) in a cylindrical coordinate system are provided. Based on a literature study, it is concluded that there is a necessity to present these transport equations here, as the exact forms of these equations are not readily available in the literature.

The transport equation of \(\langle u^{\prime }_{z} u^{\prime }_{z}\rangle \) reads

$$ \begin{array}{@{}rcl@{}} \begin{array}{lll} &\underbrace{\langle u_{r}\rangle\frac{\partial\langle u^{\prime}_{z} u^{\prime}_{z}\rangle}{\partial r} +\frac{\langle u_{\theta}\rangle}{r}\frac{\partial\langle u^{\prime}_{z} u^{\prime}_{z}\rangle}{\partial \theta} +\langle u_{z}\rangle\frac{\partial\langle u^{\prime}_{z} u^{\prime}_{z}\rangle}{\partial z}}_{H_{zz}} \\ &-\left( \underbrace{-2\langle u^{\prime}_{r} u^{\prime}_{z}\rangle\frac{\partial\langle u_{z}\rangle}{\partial r} - 2\frac{\langle u^{\prime}_{\theta} u^{\prime}_{z}\rangle}{r}\frac{\partial\langle u_{z}\rangle}{\partial \theta} - 2\langle u^{\prime}_{z} u^{\prime}_{z}\rangle\frac{\partial\langle u_{z}\rangle}{\partial z}}_{{P_{zz}}}\right) -\underbrace{\frac{2}{\rho}\langle p^{\prime}\frac{\partial u^{\prime}_{z}}{\partial z}\rangle}_{{\Pi}_{zz}} \\ &+\underbrace{2\nu\left[\left\langle\frac{\partial u^{\prime}_{z}}{\partial r}\frac{\partial u^{\prime}_{z}}{\partial r}\right\rangle +\frac{1}{r^{2}}\left\langle\frac{\partial u^{\prime}_{z}}{\partial \theta}\frac{\partial u^{\prime}_{z}}{\partial \theta}\right\rangle +\left\langle\frac{\partial u^{\prime}_{z}}{\partial z}\frac{\partial u^{\prime}_{z}}{\partial z}\right\rangle\right]}_{\varepsilon_{zz}} \\ &-\left\{\underbrace{\begin{array}{llll}&-\frac{1}{r}\frac{\partial r \langle u^{\prime}_{r} u^{\prime}_{z} u^{\prime}_{z}\rangle}{\partial r} - \frac{1}{r}\frac{\partial\langle u^{\prime}_{\theta} u^{\prime}_{z} u^{\prime}_{z}\rangle}{\partial \theta} - \frac{\partial\langle u^{\prime}_{z} u^{\prime}_{z} u^{\prime}_{z}\rangle}{\partial z} -\frac{2}{\rho}\frac{\partial\langle u^{\prime}_{z} p^{\prime}\rangle}{\partial z}\\ &+\nu\left[\frac{1}{r}\frac{\partial}{\partial r}\left( r \frac{\partial\langle u^{\prime}_{z} u^{\prime}_{z}\rangle}{\partial r}\right) +\frac{1}{r^{2}}\frac{\partial^{2}\langle u^{\prime}_{z} u^{\prime}_{z}\rangle}{\partial \theta^{2}} +\frac{\partial^{2}\langle u^{\prime}_{z} u^{\prime}_{z}\rangle}{\partial z^{2}}\right] \end{array}}_{D_{zz}}\right\}\\ &-\left[\underbrace{-4{\Omega}\left( \langle u^{\prime}_{r} u^{\prime}_{z}\rangle\sin\theta + \langle u^{\prime}_{\theta} u^{\prime}_{z}\rangle\cos\theta\right)}_{{C_{zz}}}\right] = 0 \quad. \end{array} \end{array} $$
(10)

The transport equation of \(\langle u^{\prime }_{r} u^{\prime }_{r}\rangle \) is

$$ \begin{array}{@{}rcl@{}} \begin{array}{lll} &&{}\underbrace{\langle u_{r}\rangle\frac{\partial\langle u^{\prime}_{r} u^{\prime}_{r}\rangle}{\partial r} +\frac{\langle u_{\theta}\rangle}{r}\frac{\partial\langle u^{\prime}_{r} u^{\prime}_{r}\rangle}{\partial \theta} +\langle u_{z}\rangle\frac{\partial\langle u^{\prime}_{r} u^{\prime}_{r}\rangle}{\partial z} -2\langle u_{\theta}\rangle\frac{\langle u^{\prime}_{r} u^{\prime}_{\theta}\rangle}{r}}_{{H_{rr}}}\\ &&-\left( \underbrace{2\langle u^{\prime}_{r} u^{\prime}_{\theta}\rangle\frac{\langle u_{\theta}\rangle}{r}-2\langle u^{\prime}_{r} u^{\prime}_{r}\rangle\frac{\partial\langle u_{r}\rangle}{\partial r} - 2\frac{\langle u^{\prime}_{r} u^{\prime}_{\theta}\rangle}{r}\frac{\partial\langle u_{r}\rangle}{\partial \theta} - 2\langle u^{\prime}_{r} u^{\prime}_{z}\rangle\frac{\partial\langle u_{r}\rangle}{\partial z}}_{{P_{rr}}}\right) -\underbrace{\frac{2}{\rho}\langle p^{\prime}\frac{\partial u^{\prime}_{r}}{\partial r}\rangle}_{{{\Pi}_{rr}}}\\ &&+\underbrace{2\nu\left[\left\langle\frac{\partial u^{\prime}_{r}}{\partial r}\frac{\partial u^{\prime}_{r}}{\partial r}\right\rangle +\frac{1}{r^{2}}\left\langle\left( \frac{\partial u^{\prime}_{r}}{\partial\theta}- u^{\prime}_{\theta}\right)^{2}\right\rangle +\left\langle\frac{\partial u^{\prime}_{r}}{\partial z}\frac{\partial u^{\prime}_{r}}{\partial z}\right\rangle - \frac{2}{r^{2}}\frac{\partial \langle u^{\prime}_{r} u^{\prime}_{\theta}\rangle}{\partial\theta}\right]}_{{\varepsilon_{rr}}}\\ &&-\left\{ \underbrace{\begin{array}{llll} &2\frac{\langle u^{\prime}_{r} u^{\prime}_{\theta} u^{\prime}_{\theta}\rangle}{r}-\frac{1}{r}\frac{\partial r \langle u^{\prime}_{r} u^{\prime}_{r} u^{\prime}_{r}\rangle}{\partial r} - \frac{1}{r}\frac{\partial\langle u^{\prime}_{r} u^{\prime}_{r} u^{\prime}_{\theta}\rangle}{\partial \theta} - \frac{\partial\langle u^{\prime}_{r} u^{\prime}_{r} u^{\prime}_{z}\rangle}{\partial z} -\frac{2}{\rho}\frac{\partial\langle u^{\prime}_{r} p^{\prime}\rangle}{\partial r}\\ &+\nu\left[\frac{1}{r}\frac{\partial}{\partial r}\left( r \frac{\partial\langle u^{\prime}_{r} u^{\prime}_{r}\rangle}{\partial r}\right) +\frac{1}{r^{2}}\frac{\partial^{2}\langle u^{\prime}_{r} u^{\prime}_{r}\rangle}{\partial \theta^{2}} -\frac{2}{r^{2}}\left( \langle u^{\prime}_{r} u^{\prime}_{r}\rangle -\langle u^{\prime}_{\theta} u^{\prime}_{\theta}\rangle\right) +\frac{\partial^{2}\langle u^{\prime}_{r} u^{\prime}_{r}\rangle}{\partial z^{2}}\right] \end{array}}_{{D_{rr}}}\right\}\\ &&-\left( \underbrace{4{\Omega}\langle u^{\prime}_{r} u^{\prime}_{z}\rangle\sin\theta}_{{C_{rr}}}\right) = 0 \quad. \end{array} \end{array} $$
(11)

The transport equation of \(\langle u^{\prime }_{z} u^{\prime }_{r}\rangle \) is

$$ \begin{array}{@{}rcl@{}} \begin{array}{lll} &\underbrace{\langle u_{r}\rangle\frac{\partial\langle u^{\prime}_{r} u^{\prime}_{z}\rangle}{\partial r} +\frac{\langle u_{\theta}\rangle}{r}\frac{\partial\langle u^{\prime}_{r} u^{\prime}_{z}\rangle}{\partial \theta} +\langle u_{z}\rangle\frac{\partial\langle u^{\prime}_{r} u^{\prime}_{z}\rangle}{\partial z} -\langle u_{\theta}\rangle\frac{\langle u^{\prime}_{\theta} u^{\prime}_{z}\rangle}{r}}_{{H_{zr}}} \\ &-\left( \underbrace{\begin{array}{llll}&\langle u^{\prime}_{\theta} u^{\prime}_{z}\rangle\frac{\langle u_{\theta}\rangle}{r} -\langle u^{\prime}_{r} u^{\prime}_{z}\rangle\frac{\partial\langle u_{r}\rangle}{\partial r}-\langle u^{\prime}_{r} u^{\prime}_{r}\rangle\frac{\partial\langle u_{z}\rangle}{\partial r} -\frac{\langle u^{\prime}_{\theta} u^{\prime}_{z}\rangle}{r}\frac{\partial\langle u_{r}\rangle}{\partial \theta}\\ &-\frac{\langle u^{\prime}_{r} u^{\prime}_{\theta}\rangle}{r}\frac{\partial\langle u_{z}\rangle}{\partial \theta} -\langle u^{\prime}_{z} u^{\prime}_{z}\rangle\frac{\partial\langle u_{r}\rangle}{\partial z} -\langle u^{\prime}_{r} u^{\prime}_{z}\rangle\frac{\partial\langle u_{z}\rangle}{\partial z} \end{array}}_{{P_{zr}}}\right) \\ &-\underbrace{\frac{1}{\rho}\left( \langle p^{\prime}\frac{\partial u^{\prime}_{r}}{\partial z}\rangle +\langle p^{\prime}\frac{\partial u^{\prime}_{z}}{\partial r}\rangle\right)}_{{{\Pi}_{zr}}} \\ &+\underbrace{2\nu\left[\left\langle\frac{\partial u^{\prime}_{r}}{\partial r}\frac{\partial u^{\prime}_{z}}{\partial r}\right\rangle +\frac{1}{r^{2}}\left\langle\left( \frac{\partial u^{\prime}_{r}}{\partial\theta}- u^{\prime}_{\theta}\right)\frac{\partial u^{\prime}_{z}}{\partial\theta}\right\rangle +\left\langle\frac{\partial u^{\prime}_{r}}{\partial z}\frac{\partial u^{\prime}_{z}}{\partial z}\right\rangle +\frac{1}{r^{2}}\frac{\partial \langle u^{\prime}_{\theta} u^{\prime}_{z}\rangle}{\partial\theta}\right]}_{{\varepsilon_{zr}}} \\ &-\left\{\underbrace{\begin{array}{llll}&\frac{\langle u^{\prime}_{\theta} u^{\prime}_{\theta} u^{\prime}_{z}\rangle}{r}-\frac{1}{r}\frac{\partial r \langle u^{\prime}_{r} u^{\prime}_{r} u^{\prime}_{z}\rangle}{\partial r} - \frac{1}{r}\frac{\partial\langle u^{\prime}_{r} u^{\prime}_{\theta} u^{\prime}_{z}\rangle}{\partial \theta} - \frac{\partial\langle u^{\prime}_{r} u^{\prime}_{z} u^{\prime}_{z}\rangle}{\partial z} \\ &-\frac{1}{\rho}\left( \frac{\partial\langle u^{\prime}_{z} p^{\prime}\rangle}{\partial r} +\frac{\partial\langle u^{\prime}_{r} p^{\prime}\rangle}{\partial z}\right) \\ &+\nu\left[\frac{1}{r}\frac{\partial}{\partial r}\left( r \frac{\partial\langle u^{\prime}_{r} u^{\prime}_{z}\rangle}{\partial r}\right) +\frac{1}{r^{2}}\frac{\partial^{2}\langle u^{\prime}_{r} u^{\prime}_{z}\rangle}{\partial \theta^{2}} -\frac{\langle u^{\prime}_{r} u^{\prime}_{z}\rangle}{r^{2}} +\frac{\partial^{2}\langle u^{\prime}_{r} u^{\prime}_{z}\rangle}{\partial z^{2}}\right] \end{array}}_{{D_{zr}}}\right\} \\ &-\left[\underbrace{2{\Omega}\left( \langle u^{\prime}_{z} u^{\prime}_{z}\rangle\sin\theta -\langle u^{\prime}_{r} u^{\prime}_{r}\rangle\sin\theta -\langle u^{\prime}_{r} u^{\prime}_{\theta}\rangle\cos\theta\right)}_{{C_{zr}}}\right] = 0 \quad. \end{array} \end{array} $$
(12)

The transport equation of \(\langle u^{\prime }_{\theta } u^{\prime }_{\theta }\rangle \) is

$$ \begin{array}{@{}rcl@{}} \begin{array}{lll} &\underbrace{\langle u_{r}\rangle\frac{\partial\langle u^{\prime}_{\theta} u^{\prime}_{\theta}\rangle}{\partial r} + \frac{\langle u_{\theta}\rangle}{r}\frac{\partial\langle u^{\prime}_{\theta} u^{\prime}_{\theta}\rangle}{\partial \theta} + \langle u_{z}\rangle\frac{\partial\langle u^{\prime}_{\theta} u^{\prime}_{\theta}\rangle}{\partial z} + 2\langle u_{\theta}\rangle\frac{\langle u^{\prime}_{\theta} u^{\prime}_{\theta}\rangle}{r}}_{{H_{\theta\theta}}} \\ &-\left( \underbrace{-2\langle u^{\prime}_{r} u^{\prime}_{\theta}\rangle\frac{\langle u_{\theta}\rangle}{r}-2\langle u^{\prime}_{r} u^{\prime}_{\theta}\rangle\frac{\partial\langle u_{\theta}\rangle}{\partial r} - 2\frac{\langle u^{\prime}_{\theta} u^{\prime}_{\theta}\rangle}{r}\frac{\partial\langle u_{\theta}\rangle}{\partial \theta} - 2\langle u^{\prime}_{\theta} u^{\prime}_{z}\rangle\frac{\partial\langle u_{\theta}\rangle}{\partial z}}_{{P_{\theta\theta}}}\right) \\ &-\underbrace{\frac{2}{\rho r}\langle p^{\prime}\frac{\partial u^{\prime}_{\theta}}{\partial {\theta}}\rangle}_{{{\Pi}_{\theta\theta}}} \\ &+\underbrace{2\nu\left[\left\langle\frac{\partial u^{\prime}_{\theta}}{\partial r}\frac{\partial u^{\prime}_{\theta}}{\partial r}\right\rangle +\frac{1}{r^{2}}\left\langle\left( \frac{\partial u^{\prime}_{\theta}}{\partial\theta}+ u^{\prime}_{r}\right)^{2}\right\rangle +\left\langle\frac{\partial u^{\prime}_{\theta}}{\partial z}\frac{\partial u^{\prime}_{\theta}}{\partial z}\right\rangle - \frac{2}{r^{2}}\frac{\partial \langle u^{\prime}_{r} u^{\prime}_{\theta}\rangle}{\partial\theta}\right]}_{{\varepsilon_{\theta\theta}}} \\ &-\left\{\underbrace{\begin{array}{llll}&-2\frac{\langle u^{\prime}_{r} u^{\prime}_{\theta} u^{\prime}_{\theta}\rangle}{r}-\frac{1}{r}\frac{\partial r \langle u^{\prime}_{r} u^{\prime}_{\theta} u^{\prime}_{\theta}\rangle}{\partial r} - \frac{1}{r}\frac{\partial\langle u^{\prime}_{\theta} u^{\prime}_{\theta} u^{\prime}_{\theta}\rangle}{\partial \theta} - \frac{\partial\langle u^{\prime}_{\theta} u^{\prime}_{\theta} u^{\prime}_{z}\rangle}{\partial z} - \frac{2}{\rho r}\frac{\partial\langle u^{\prime}_{\theta} p^{\prime}\rangle}{\partial {\theta}} \\ &+\nu\left[\frac{1}{r}\frac{\partial}{\partial r}\left( r \frac{\partial\langle u^{\prime}_{\theta} u^{\prime}_{\theta}\rangle}{\partial r}\right) +\frac{1}{r^{2}}\frac{\partial^{2}\langle u^{\prime}_{\theta} u^{\prime}_{\theta}\rangle}{\partial \theta^{2}} +\frac{2}{r^{2}}\left( \langle u^{\prime}_{r} u^{\prime}_{r}\rangle -\langle u^{\prime}_{\theta} u^{\prime}_{\theta}\rangle\right) +\frac{\partial^{2}\langle u^{\prime}_{\theta} u^{\prime}_{\theta}\rangle}{\partial z^{2}}\right] \end{array}}_{{D_{\theta\theta}}}\right\} \\ &-\left( \underbrace{4{\Omega}\langle u^{\prime}_{\theta} u^{\prime}_{z}\rangle\cos\theta}_{{C_{\theta\theta}}}\right) = 0 \quad. \end{array} \end{array} $$
(13)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZP., Wang, BC. Direct Numerical Simulation of Turbulent Flow in a Circular Pipe Subjected to Radial System Rotation. Flow Turbulence Combust 103, 1057–1079 (2019). https://doi.org/10.1007/s10494-019-00062-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-019-00062-8

Keywords

Navigation