Skip to main content
Log in

A Study of Strain Rate Effects for Turbulent Premixed Flames with Application to LES of a Gas Turbine Combustor Model

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Large-scale strain rate field, a resolved quantity which is easily computable in large-eddy simulations (LES), could have profound effects on the premixed flame properties by altering the turbulent flame speed and inducing local extinction. The role of the resolved strain rate has been investigated in a posterior LES study of GE lean premixed dry low-NOx emissions LM6000 gas turbine combustor model. A novel approach which is based on the coupling of the linear-eddy model with a one-dimensional counterflow solver has been applied to obtain the parameterizations of the resolved premixed flame properties in terms of the reactive progress variable, the local strain rate measure, and local Reynolds and Karlovitz numbers. The strain rate effects have been analyzed by comparing LES statistics for several models of the turbulent flame speed, i.e, with and without accounting for the local strain rate effects, with available experimental data. The sensitivity of the simulation results to the inflow velocity conditions as well as the grid resolution have been also studied. Overall, the results obtained demonstrate that the effects of the resolved strain rate are not dominant for the considered premixed flame configuration and the unstrained turbulent flame speed model is found to perform as well as the one that allows for the strain rate effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fast Artificial Neural Network Library (FANN). http://leenissen.dk/fann

  2. Bergthorson, J.M., Salusbury, S.D., Dimotakis, P.E.: Experiments and modelling of premixed laminar stagnation flame hydrodynamics. J. Fluid Mech. 681, 340–369 (2011)

    Article  MATH  Google Scholar 

  3. Boger, M., Veynante, D., Boughanem, H., Trouvé, A.: Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. In: Proceedings of 27th Symposium on Combustion, pp. 917–925. The Combustion Institute (1998)

  4. Bray, K., Champion, M., Libby, P.A.: Premixed flames in stagnation turbulence Part II. The mean velocities and pressure and damkohler number. Combust. Flame 112, 635–653 (1998)

    Article  Google Scholar 

  5. Bray, K., Champion, M., Libby, P.A.: Premixed flames in stagnation turbulence Part VI. Predicting the mean density and the permitted rates of strain for impinging reactant streams. Combust. Flame 156, 310–321 (2009)

    Article  Google Scholar 

  6. Calhoon, W.H.: Premixed subgrid modeling based on stochastic model parametrization: model formulation and characteristics. In: Proceedings of the 50th Aerospace Sciences Meeting. AIAA. Paper 2012-177 (2012)

  7. Calhoon, W.H., Zambon, A.C., Sekar, B., Kiel, B.: Subgrid scale combustion modeling based on stochastic model parameterization. J. Eng. Gas Turbines Power 134, 031505 (2012)

    Article  Google Scholar 

  8. Chakraborty, N., Cant, N.: Effects of lewis number on flame surface density transport in turbulent premixed combustion. Combust. Flame 158, 1768–1787 (2011)

    Article  Google Scholar 

  9. Chakraborty, N., Klein, M.: A priori direct numerical simulation assessment of algebraic flame surface density models for turbulent premixed flames in the context of large eddy simulation. Phys. Fluids 20, 085108 (2008)

    Article  Google Scholar 

  10. Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for les of premixed turbulent combustion part I: non-dynamic formulation and initial tests. Combust. Flame 131, 159–180 (2002)

    Article  Google Scholar 

  11. Cheng, R.K.: Velocity and scalar characteristics of premixed turbulent flames stabilized by Weak Swirl. Combust. Flame 101, 1–14 (1995)

    Article  Google Scholar 

  12. Coriton, B., Frank, J.H., Gomez, A.: Effects of strain rate, turbulence, reactant stoichiometry and heat losses on the interaction of turbulent premixed with stoichiometric counterflowing combustion products. Combust. Flame 160, 2442–2456 (2013)

    Article  Google Scholar 

  13. Coriton, B., Smooke, M.D., Gomez, A.: Effect of the composition of the hot product stream in the quasi-steady extinction of strained premixed flame. Combust. Flame 157, 2155–2164 (2010)

    Article  Google Scholar 

  14. Dinkelacker, F., Soika, A., Most, D., Hoffman, D., Leipertz, A., Polifke, W., Döbbeling, K.: Structure of locally quenched highly turbulent lean premixed flames. In: Proceedings of 27th Symposium on Combustion, pp 857–865. The Combustion Institute (1998)

  15. Driscoll, J.F.: Turbulent premixed combustion: flamelet structure and its effect on turbulent burning velocities. Prog. Energy Combust. Sci. 34, 91–134 (2008)

    Article  Google Scholar 

  16. Fureby, C.: A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion. Proc. Combust. Inst. 30, 593–601 (2005)

    Article  Google Scholar 

  17. Fureby, C.: LES of a multi-burner annular gas turbine combustor. Flow Turbul. Combust. 84, 543–564 (2010)

    Article  MATH  Google Scholar 

  18. Gicquel, L.Y.M., Staffelbach, G., Poinsot, T.: Large Eddy Simulations of gaseous flames in gas turbine combustion chambers. Prog. Energy Combust. Sci. 38, 782–817 (2012)

    Article  Google Scholar 

  19. Goldin, G.M., Menon, S.: A comparison of scalar PDF turbulent combustion models. Combust. Flame 113, 442–453 (1998)

    Article  Google Scholar 

  20. Grinstein, F.F., Fureby, C.: LES studies of the flow in a swirl gas combustor. Proc. Combust. Inst. 30, 1791–1798 (2005)

    Article  Google Scholar 

  21. Hawkes, E.R., Cant, R.S.: A flame surface density approach to large-eddy simulation of premixed turbulent combustion. Proc. Combust. Inst. 28, 51–58 (2000)

    Article  Google Scholar 

  22. Hura, H.S., Joshi, N.D., Mongia, H.C.: Dry low emissions premixer CCD modeling and validation. In: ASME-98-GT-444. ASME (1998)

  23. Joshi, N.D., Mongia, H.C., Leonard, G., Stegmaier, J.W., Vickers, E.C.: Dry low emissions combustor premixer development. In: ASME-98-GT-310. ASME (1998)

  24. Kannepalli, C., Arunajatesan, S., Calhoon Jr., W. H., Dash, S.M.: Large eddy simulations of high speed flows. In: Proceedings of 2004 Joint ASME-JSME Fluids Engineering Summer Conference. ASME. Paper No. HT-FED2004-56162 (2004)

  25. Kemenov, K.A., Wang, H., Pope, S.B.: Turbulence resolution scale dependence in large-eddy simulations of a jet flame. Flow Turbul. Combust. 88, 529–561 (2012)

    Article  MATH  Google Scholar 

  26. Keppeler, R., Tangermann, E., Allaudin, U., Pfitzner, M.: LES of low to high turbulent combustion in an elevated pressure environment. Flow Turbul. Combust. 92, 767–802 (2014)

    Article  Google Scholar 

  27. Kim, W.W., Menon, S.: An unsteady incompressible navier-stokes solver for large eddy simulation of turbulent flows. Int. J. Numer. Methods Fluids 31, 983–1017 (1999)

    Article  MATH  Google Scholar 

  28. Kim, W.W., Menon, S.: Numerical modeling of turbulent premixed flames in the thin-reaction-zones regime. Combust. Sci. Technol. 160, 119–150 (2000)

    Article  Google Scholar 

  29. Kim, W.W., Menon, S., Mongia, H.C.: Large-Eddy simulation of a gas turbine combustor flow. Combust. Sci. Technol. 143, 25–62 (1999)

    Article  Google Scholar 

  30. Knudsen, E., Colla, H., Hawks, E.R., Pitsch, H.: LES of a premixed jet flame DNS using a strained flamelet model. Combust. Flame 160, 2911–2927 (2013)

    Article  Google Scholar 

  31. Kostiuk, L.W., Bray, K.N.C., Cheng, R.K.: Experimental study of premixed turbulent combustion in opposed streams. Part II – reacting flow field and extinction. Combust. Flame 92, 396–409 (1993)

    Article  Google Scholar 

  32. Lecocq, G., Richard, S., Colin, O., Vervisch, L.: Hybrid presumed pdf and flame surface density approaches for large-eddy simulation of premixed turbulent combustion. Combust. Flame 158, 1201–1214 (2011)

    Article  Google Scholar 

  33. Ma, T., Stein, O.T., Chakraborty, N., Kempf, A.M.: A posteriori testing of algebraic flame surface density models for LES. Combust. Theory Model. 17, 431–482 (2013)

    Article  MathSciNet  Google Scholar 

  34. Menon, S., Kerstein, A.R.: The linear-eddy model. In: Echekki, T., Mastorakos, E. (eds.) Turbulent Combustion Modeling, Fluid Mechanics and Its Applications, vol. 95, pp. 221–247. Springer, Netherlands (2011)

  35. Mongia, H.C., Held, T.J., Hsiao, G.C., Pandalai, R.P.: Challenges and progress in controlling dynamics in gas turbine combustors. J. Propuls. Power 19, 822–829 (2003)

    Article  Google Scholar 

  36. Nogenmyr, K.J., Fureby, C., Bai, X.C., Petersson, P., Collin, R., Linne, M.: Large eddy simulation and laser diagnostics studies on a low swirl stratified premixed flame. Combust. Flame 156, 25–36 (2009)

    Article  Google Scholar 

  37. Peters, N.: The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech. 384, 107–132 (1999)

    Article  MATH  Google Scholar 

  38. Piomelli, U., Balaras, E.: Wall-Layer models for large-eddy simulations. Ann. Rev. Fluid Mech. 34, 349–374 (2002)

    Article  MathSciNet  Google Scholar 

  39. Pitsch, H.: A consistent level set formulation for large-eddy simulation of premixed turbulence combustion. Combust. Flame 143, 587–598 (2005)

    Article  Google Scholar 

  40. Pocheau, A.: Scale invariance in turbulent front propagation. Phys. Rev. E 49, 1109–1122 (1994)

    Article  MathSciNet  Google Scholar 

  41. Richard, S., Colin, O., Vermorel, O., Benkenida, A., Angelberger, C., Veynante, D.: Towards large eddy simulation of combustion in spark ignition engines. Proc. Combust. Inst. 31, 3056–3066 (2007)

    Article  Google Scholar 

  42. Sankaran, V., Drozda, T.G., Oefelein, J.C.: A tabulated closure for turbulent non-premixed combustion based on the linear eddy model. Proc. Combust. Inst. 32, 1571–1578 (2009)

    Article  Google Scholar 

  43. Schumann, U.: Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18, 376–404 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  44. Smirnov, A., Shi, S., Celik, I.: Random flow generation technique for large eddy simulations and particle-dynamics modeling. J. Fluids Eng. 123, 359–371 (2001)

    Article  Google Scholar 

  45. Smith, T., Menon, S.: Simulations of freely propagating turbulent premixed flames. Combust. Sci. Technol. 128, 99–130 (1997)

    Article  Google Scholar 

  46. Sung, C.J., Law, C.K., Chen, J.Y.: An augmented reduced mechanism for methane oxidation with comprehensive global parametric validation. Proc. Combust. Inst. 27, 295–304 (1998)

    Article  Google Scholar 

  47. Syred, N., Beér, J.M.: Combustion in swirling flows: a review. Combust. Flame 23, 143–201 (1974)

    Article  Google Scholar 

  48. Valera-Medina, A., Syred, N., Bowen, P., Marsh, R.: Shear flow and central recirculation zone interaction in reactive swirling flows. In: Proceedings of the 52th Aerospace Sciences Meeting. AIAA . Paper 2014-1386 (2014)

  49. Vreman, A.W.: An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys. Fluids 16, 3670 (2004)

    Article  Google Scholar 

  50. Xia, L.L., Smith, B.L., Benim, A.C., Schmidli, J., Yadigaroglu, G.: Effect of inlet and outlet boundary conditions on swirling flows. Comput. Fluids 26, 811–823 (1997)

    Article  MATH  Google Scholar 

  51. Yeung, P.K., Girimaji, S.S., Pope, S.B.: Straining and scalar dissipation on material surfaces in turbulence: implications for flamelets. Combust. Flame 79, 340–365 (1990)

    Article  Google Scholar 

  52. Zimont, V.L.: Gas premixed combustion at high turbulence. Turbulent flame closure combustion model. Exp. Thermal Fluid Sci. 21, 179–186 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin A. Kemenov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kemenov, K.A., Calhoon, W.H. A Study of Strain Rate Effects for Turbulent Premixed Flames with Application to LES of a Gas Turbine Combustor Model. Flow Turbulence Combust 94, 731–765 (2015). https://doi.org/10.1007/s10494-015-9594-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-015-9594-4

Keywords

Navigation