Skip to main content
Log in

LES of a Multi-burner Annular Gas Turbine Combustor

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

In this study, Large Eddy Simulation (LES) has been used to predict the flow, mixing and combustion in both a single burner laboratory gas turbine combustor and in an 18 burner annular combustor, having identical cross sections. The LES results for the single burner laboratory combustor are compared with experimental data for a laboratory model of this combustor, and with other LES predictions, with good agreement. An explicit finite volume based LES model, using the mixed subgrid model together with a partially stirred reactor model for the turbulence chemistry interactions, is used. For the annular combustor, with the swirlers parameterized by jet inflow boundary conditions, we have investigated the influence of the a-priori unknown combustor exit impedance, the influence of the swirler characteristics and the fuel type. The combustion chemistry of methane–air and n-decane–air combustion is modeled by a two-step reaction mechanism, whereas NOx is separately modeled with a one-step mechanism. No experimental data exists for the annular combustor, but these results are compared with the single burner LES and experimental results available. The combustor exit impedance, the swirler- and fuel characteristics all seem to influence the combusting flow through the acoustics of the annular combustor. To examine this in greater detail time-series and eigenmodes of the combustor flow fields are analyzed and comparisons are made also with results from conventional thermoacoustic eigenmode analysis, with reasonable agreement. The flow and pressure distributions in the annular combustor are described in some detail and the mechanisms by which the burners interact are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Candel, S.: Combustion dynamics and control: progress and challenges. Proc. Comb. Inst. 29, 1 (2002)

    Article  Google Scholar 

  2. Li, G., Gutmark, E.: Experimental study on boundary conditions effects on non-reacting and reacting flow in a multi-swirl gas turbine combustor. AIAA J. 44, 444 (2005)

    Article  ADS  Google Scholar 

  3. Boudier, G., Gicquel, L.Y.M., Poinsot, T., Bissiéres, C., Bérat, C.: Comparison of LES, RANS and experiments in an aeronautical gas turbine combustion chamber. Proc. Comb Inst. 31, 3075 (2007)

    Article  Google Scholar 

  4. Staffelbach, G., Gicquel, L.Y.M., Boudier, G., Poinsot, T.: Large eddy simulation of self excited azimuthal modes in annular combustors. Proc. Comb. Inst. 32, 2909–2916 (2009). doi:10.1016/j.proci.2008.05.033

    Article  Google Scholar 

  5. Pankiewitz, C., Sattelmayer, T.: Time domain simulation of combustion instabilities in annular combustors. J. Eng. Gas Turbine Power 125, 677 (2003)

    Article  Google Scholar 

  6. Krebs, W., Walz, G., Hoffmann, S.: Thermoacoustic analysis of annular combustor. AIAA 1999–1971 (1999)

  7. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. R. T. Edwards, Philadelphia (2001)

    Google Scholar 

  8. Crocco, L., Cheng, S.L.: Theory of Combustion Instability in Liquid Propellant Rocket Motors, Agardograph No 8, Butterworths Sci. Publ (1956)

  9. Sagaut, P.: Large Eddy Simulation for Incompressible Flows. Springer Verlag, Heidelberg (2001)

    MATH  Google Scholar 

  10. Grinstein, F.F., Margolin, L., Rider, B.: In Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  11. Nogenmyr, K.-J., Fureby, C., Bai, X.S., Petersson, P., Linné, M.: Two independent large eddy simulation studies on a low swirl stratified premixed flame. Comb. Flame. 156, 25 (2007)

    Article  Google Scholar 

  12. Kim, W.-W., Menon, S., Mongia, H.C.: Large-eddy simulation of a gas turbine combustor flow. Comb. Sci. Tech. 143, 25 (1999)

    Article  Google Scholar 

  13. Fureby, C., Grinstein, F.F., Li, G., Gutmark, E.: An experimental and computational study of a multi-swirl gas turbine combustor. Proc. Comb. Inst. 31, 3107 (2006)

    Article  Google Scholar 

  14. Selle, L., Lartigue, G., Poinsot, T., Koch, R., Schildmacher, K.U., Krebs, W., Prade, B., Kaufmann, P., Veynante, D.: Compressible large-eddy simulation of turbulent combustion in complex geometry on unstructured meshes. Comb. Flame. 137, 489 (2004)

    Article  Google Scholar 

  15. Menon, S., Stone, C., Patel, N.: Multi-scale modeling for LES of engineering designs of large scale combustors. AIAA-2004-0157 (2004)

  16. Hura, H.S., Joshi, N.D., Mongia, H.C., Tonouchi, J.: Dry low emission premixer CCD modeling and validation. ASME-98-GT-444 (1998)

  17. Held, T.J., Mongia, H.C.: Application of a Partially premixed laminar flamelet model to a low-emission gas turbine combustor. ASME-98-GT-217 (1998)

  18. Grinstein, F.F., Fureby, C.: LES studies of the flow in a swirl gas combustor. Proc. Comb. Inst. 30, 1791 (2004)

    Article  Google Scholar 

  19. Fureby, C.: Comparison of flamelet and finite rate chemistry les for premixed turbulent combustion. AIAA 2007-1413 (2007)

  20. O’Rourke, P.J., Bracco, F.V.: Two scaling transformations for the numerical computation of multidimensional unsteady laminar flames. J. Comp. Phys. 33, 185 (1979)

    Article  MATH  ADS  Google Scholar 

  21. Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12, 1843 (2000)

    Article  ADS  Google Scholar 

  22. Grimaji, S.S.: Assumed β-PDF model for turbulent mixing: validation and extension to multiple scalar mixing. Comb. Sci. Tech. 78, 177 (1991)

    Article  Google Scholar 

  23. Ertesvåg, I.S., Magnussen, B.F.: The eddy dissipation turbulence energy cascade model. Comb. Sci. Tech. 149, 213 (2000)

    Article  Google Scholar 

  24. Karlsson, J.A.J.: Modeling Auto-ignition, Flame Propagation and Combustion in Non-stationary turbulent sprays. PhD Thesis Chalmers University of Technology, Göteborg, Sweden (1995)

  25. Grinstein, F.F., Kailasanath, K.K.: Three dimensional numerical simulations of unsteady reactive square jets. Comb. Flame. 100, 2 (1994)

    Article  Google Scholar 

  26. Barlow, R., Karpetis, A., Frank, J., Chen, J.-Y.: Scalar profiles and no formation in laminar opposed flow partially premixed methane/air flames. Comb. Flame. 127, 2102 (2001)

    Article  Google Scholar 

  27. Fureby, C.: On LES and DES of wall bounded flows. Ercoftac Bulletin No. 72, March Issue (2007)

  28. Baudoin, E., Nogenmyr, K.J., Bai, X.S., Fureby, C.: Comparison of LES models applied to a bluff body stabilized flame. AIAA 2009-1178 (2009)

  29. Frisch, U.: Turbulence. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  30. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A Tensorial approach to CFD using object oriented techniques. Comp. Physics 12, 629 (1997). See also http://www.opencfd.co.uk

    Google Scholar 

  31. Drikakis, D., Fureby, C., Grinstein, F.F., Youngs, D.: Simulations of transition and turbulence decay in the Taylor-green vortex with the MILES approach. J. Turbul. 8, 1 (2007)

    Article  Google Scholar 

  32. Duwig, C., Fureby, C.: LES of unsteady lean stratified premixed combustion. Comb. Flame 151, 85 (2007)

    Article  Google Scholar 

  33. Fureby, C.: Large eddy simulation of ship hydrodynamics. 27th Symposium on Naval Hydrodynamics, p 389, Invited topical Review (2008)

  34. Fureby, C.: Towards large eddy simulation in engineering. Prog. Aerospace Science. 44, 381 (2008)

    Article  ADS  Google Scholar 

  35. Fureby, C., Bensow, R.: LES at work: quality management in practical LES. In: Meyers, J., Geurts, B., Sagaut, P. (eds.) Quality and Reliability of Large Eddy Simulations, p. 239, Springer, Verlag (2008)

    Chapter  Google Scholar 

  36. Fureby, C.: LES modeling of combustion for propulsion applications. Phil. Trans. R. Soc. 367, 2957 (2009)

    Article  ADS  Google Scholar 

  37. Drikakis, D., Fureby, C., Grinstein, F.F., Liefendahl, M.: ILES with limiting algorithms. In: Grinstein, F.F., Margolin, L. Rider, B.(eds.) Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics, Cambridge University Press, p 94 (2007)

  38. Sweby, P.K.: High resolution TVD schemes using flux limiters. In: Lectures in applied mathematics. Ed. B. Engquist. 22, 289 (1985)

  39. Issa, R.I.: Solution of the implicitly discretized fluid flow equations by operator splitting. J. Comp. Phys. 62, 40 (1986)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. Kim, W.-W., Syed, S.: Large eddy simulation needs for gas turbine combustor design. AIAA 2004-0331 (2004)

  41. Grinstein, F.E., Young, T.R., Gutmark, E.J., Li, G., Hsiao, G., Mongia, H.: Flow dynamics in a swirl combustor. J. Turbul. 3, 30 (2002)

    Article  ADS  Google Scholar 

  42. Poinsot, T.J., Lele, S.K.: Boundary conditions for direct simulation of compressible viscous reacting flows. J. Comp. Phys. 101, 104 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. Celik, I.B., Cehreli, Z.N., Yavuz, I.: Index of resolution quality for large eddy simulations. ASME J. Fluids Engng. 127, 949 (2005)

    Article  Google Scholar 

  44. Krebs, W., Walz, G., Hoffmann, S.: Thermoacoustic analysis of annular combustor. AIAA 1999–1971 (1999)

  45. Held, T.J., Mueller, M.A., Li, S.C., Mongia, H.: A data driven model for NOX, CO and UHC emissions for a dry low emissions gas turbine combustor. AIAA 2001–3425 (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christer Fureby.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fureby, C. LES of a Multi-burner Annular Gas Turbine Combustor. Flow Turbulence Combust 84, 543–564 (2010). https://doi.org/10.1007/s10494-009-9236-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-009-9236-9

Keywords

Navigation