Skip to main content
Log in

Algebraic-Closure-Based Moment Method for Unsteady Eulerian Simulations of Non-Isothermal Particle-Laden Turbulent Flows at Moderate Stokes Numbers in Dilute Regime

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

To model unsteady non-isothermal dilute particle-laden turbulent flows, an algebraic-closure-based moment method (ACBMM) is developed. ACBMM is a Eulerian approach for the dispersed phase conceived to be coupled with direct numerical simulations (DNSs) of the turbulence when an accurate local description of the turbulent mixture is required. It is based on the combination of a conditional probability density function (PDF) approach, which provides local instantaneous Eulerian equations for the low-order moments of the PDF, and appropriate constitutive relations, as algebraic closures, which are necessary to close the set of conservation equations. The computed low-order moments are the mesoscopic particle number density, particle velocity and particle temperature and the unclosed higher-order moments are the particle random uncorrelated motion (RUM) stress tensor and the RUM heat flux (RUM-HF) which appear in the particle momentum and enthalpy equations, respectively. The RUM stress tensor is closed by an additional transport equation for the trace of the tensor and a polynomial representation for tensor functions modeling its deviatoric part. The polynomial representation is used in the framework of an assumption of equilibrium of the RUM anisotropy and leads to an explicit algebraic stress model (2ΦEASM). Similarly, the RUM-HF is modeled assuming equilibrium of the scaled heat flux and explicit self-consistent solutions (2ΦEAHFM) are found by analogy with turbulent heat flux models. As 2ΦEAHFM entails the computation of the RUM temperature variance, an additional transport equation is developed for it. By means of an a priori analysis, the algebraic closures developed by the present study are assessed against actual particle Eulerian fields which are extracted from particle Lagrangian simulations coupled with DNS of a temporal non-isothermal particle-laden turbulent planar jet, for various Stokes numbers. Results show that both 2ΦEASM and 2ΦEAHFM are successful in reproducing the unclosed moments up to moderate turbulent-macroscale Stokes numbers allowing the ACBMM to accurately predict the unsteady non-isothermal dispersed phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balzer, G., Simonin, O., Boelle, A., Laviéville, J.: A unifying modelling approach for the numerical prediction of dilute and dense gas-solid two-phase flows. In: Kwauk, M., Li, J. (eds.) Proc. of the 5th Int. Conf. on Circulating Fluidized Beds Circulating Fluidized Bed Technology V, pp. 432–439. Science Press, Beijing (1996)

    Google Scholar 

  2. Bédat, B., Simonin O.: Numerical study of the inter-phase heat transfers in a non-isothermal particle laden slab flow. In: Proceedings of the 5th International Conference on Multiphase Flow (ICMF). Yokohama, Japan, 30 May–4 June 2004

  3. Chalons, C., Fox, R.O., Massot, M.: A multi-Gaussian quadrature method of moments for gas-particle flows in a les framework. In: Proceedings of the Center for Turbulence Research (CTR) Summer Program, pp. 347–358 (2011)

  4. Chalons, C., Kah, D., Massot, M.: Beyond pressureless gas dynamics : Quadrature-based velocity moment models. Commun. Math. Sci. 10, 1241–1272 (2012)

    Article  MathSciNet  Google Scholar 

  5. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-Uniform Gases, 3rd edn. Cambridge University Press (1970)

  6. Chen, C.P., Wood, P.E.: A turbulence closure model for dilute gas-particle flows. Can. J. Chem. Eng. 63(3), 349–360 (1985)

    Article  Google Scholar 

  7. Chen, H., Orszag, S.A., I.Staroselsky, Succi, S.: Expanded analogy between Boltzmann kinetic theory of fluids and turbulence. J. Fluid Mech. 519, 301–314 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. de Chaisemartin, S., Fréret, L., Kah, D., Laurent, F., Fox, R.O., Reveillon, J., Massot, M.: Eulerian models for turbulent spray combustion with polydispersity and droplet crossing. C. R. Mecanique 337, 438–448 (2009). Special Issue Combustion for Aerospace Propulsion

    Article  MATH  Google Scholar 

  9. Desjardins, O., Fox, R.O., Villedieu, P.: A quadrature-based moment method for dilute fluid-particle flows. J. Comput. Phys. 227(4), 2514–2539 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dombard, J., Leveugle, B., Selle, L., Reveillon, J., Poinsot, T., D’Angelo, Y.: Modeling heat transfer in dilute two-phase flows using the mesoscopic Eulerian formalism. Int. J. Heat Mass Transf. 55(5–6), 1486–1495 (2012)

    Article  MATH  Google Scholar 

  11. Druzhinin, O.A., Elghobashi, S.: Direct numerical simulations bubble-laden turbulent flows using the two-fluid formulation. Phys. Fluids 10(3), 685–697 (1998)

    Article  Google Scholar 

  12. Druzhinin, O.A., Elghobashi, S.: On the decay rate of isotropic turbulence laden with microparticles. Phys. Fluids 11(3), 602–610 (1999)

    Article  MATH  Google Scholar 

  13. Elghobashi, S.E., Abou-Arab, T.W.: A two-equation turbulence model for two-phase flows. Phys. Fluids 26(4), 931–938 (1983)

    Article  MATH  Google Scholar 

  14. Ferry, J., Balachandar, S.: A fast Eulerian method for dispersed two-phase flow. Int. J. Multiphase Flow 27, 1199–1226 (2001)

    Article  MATH  Google Scholar 

  15. Ferry, J., Balachandar, S.: Equilibrium Eulerian approach for predicting the thermal field of a dispersion of small particles. Int. J. Heat Mass Transf. 48, 681–689 (2005)

    Article  MATH  Google Scholar 

  16. Février, P., Simonin, O., Squires, K.D.: Partitioning of particle velocities in gas-solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: theoretical formalism and numerical study. J. Fluid Mech. 533 1–46 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fox, R.O.: A quadrature-based third-order moment method for dilute gas-particle flows. J. Comput. Phys. 227(12), 6313–6350 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fox, R.O., Laurent, F., Massot, M.: Numerical simulation of spray coalescence in an Eulerian framework: direct quadrature method of moments and multi-fluid method. J. Comput. Phys. 227(6), 3058–3088 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gatski, T.B., Speziale, C,G,: On explicit algebraic stress models for complex turbulent flows. J. Fluid Mech. 254, 59–78 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. Girimaji, S.S.: Fully explicit and self-consistent algebraic Reynolds stress model. Theor. Comput. Fluid Dyn. 8(6), 387–402 (1996)

    MATH  Google Scholar 

  21. Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331–407 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gustavsson, K., Meneguz, E., Reeks, M., Mehlig, B.: Inertial-particle dynamics in turbulent flows: caustics, concentration fluctuations, and random uncorrelated motion. New J. Phys. 14, 115017 (2012)

    Article  Google Scholar 

  23. He, J., Simonin, O.: Non-equilibrium prediction of the particle-phase stress tensor in vertical pneumatic conveying. In: Proceedings of the 5th International Symposium on Gas-Solid Flows, vol. 166, pp. 253–263. ASME FED (1993)

  24. IJzermans, R.H.A., Meneguz, E., Reeks, M.W.: Segregation of particles in incompressible random flows: singularities, intermittency and random uncorrelated motion. J. Fluid Mech. 653, 99–136 (2010)

    Article  MATH  Google Scholar 

  25. Kah, D., Laurent, F., Fréret, L., de Chaisemartin, S., Fox, R.O., Reveillon, J., Massot, M.: Eulerian quadrature-based moment models for dilute polydisperse evaporating sprays. Flow Turbul. Combust. 85(3–4), 649–676 (2010)

    Article  MATH  Google Scholar 

  26. Kaufmann, A., Moreau, M., Simonin, O., Helie, J.: Comparison between Lagrangian and mesoscopic Eulerian modelling approaches for inertial particles suspended in decaying isotropic turbulence. J. Comput. Phys. 227(13), 6448–6472 (2008)

    Article  MATH  Google Scholar 

  27. Laurent, F., Massot, M.: Multi-fluid modeling of laminar poly-dispersed spray flames: origin, assumptions and comparison of sectional and sampling methods. Combust. Theor. Model. 5, 537–572 (2001)

    Article  MATH  Google Scholar 

  28. Le Lostec, N., Villedieu, P., Simonin, O.: Quadrature-based third order moment models for the simulation of particle laden flows. In: Proceedings in the 7th International Conference on Multiphase Flow (ICMF). Tampa, Florida, USA, 30 May–4 June 2010

  29. Marchisio, D.L., Fox, R.O.: Solution of population balance equations using the direct quadrature method of moments. J. Aerosol Sci. 36(1), 43–73 (2005)

    Article  Google Scholar 

  30. Masi, E.: Theoretical and numerical study of the modeling of unsteady non-isothermal particle-laden turbulent flows by an Eulerian-Eulerian approach. Ph.D. thesis, Institut National Polytechnique de Toulouse (2010)

  31. Masi, E., Bédat, B., Moreau, M., Simonin, O.: Euler-Euler large-eddy simulation approach for non isothermal particle-laden turbulent jet. In: Proceedings of the ASME - Fluids Engineering Division Summer Meeting, vol. 1, pp. 111–120. Symposia, Parts A and B, Paper No. FEDSM2008-55143. Jacksonville, Florida, USA, 10–14 August 2008

  32. Masi, E., Riber, E., Sierra, P., Simonin, O., Gicquel, L.Y.M.: Modeling the random uncorrelated velocity stress tensor for unsteady particle Eulerian simulation in turbulent flows. In: Proceedings of the 7th International Conference on Multiphase Flow (ICMF). Tampa, Florida, 30 May–4 June 2010

  33. Masi, E., Simonin, O., Bédat, B.: The mesoscopic Eulerian approach for evaporating droplets interacting with turbulent flows. Flow Turbul. Combust. 86, 563–583 (2011)

    Article  MATH  Google Scholar 

  34. Massot, M., Laurent, F., Kah, D., de Chaisemartin, S.: A robust moment method for evaluation of the disappearance rate of evaporating sprays. SIAM J. Appl. Math. 70(8), 3203–3234 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  35. Maxey, M.R.: The gravitational settling of particles in homogeneous turbulence and random flow. J. Fluid Mech. 26, 441 (1987)

    Article  Google Scholar 

  36. Maxey, M.R., Riley, J.J.: Equation of motion for a small rigid sphere in a non uniform flow. Phys. Fluids 26, 2883–2889 (1983)

    Article  Google Scholar 

  37. Meneguz, E., Reeks, M.W.: Statistical properties of particle segregation in homogeneous isotropic turbulence. J. Fluid Mech. 686, 338–351 (2011)

    Article  MATH  Google Scholar 

  38. Moreau, M.: Modélisation numérique directe et des grandes échelles des écoulements turbulents gaz-particules dans le formalisme Eulérien mésoscopique. Ph.D. thesis, Institut National Polytechnique de Toulouse (2006)

  39. Moreau, M., Simonin, O., Bédat, B.: Development of gas-particle Euler-Euler LES approach: a priori analysis of particle sub-grid models in homogeneous isotropic turbulence. Flow Turbul. Combust. 84(2), 295–324 (2010)

    Article  MATH  Google Scholar 

  40. Passalacqua, A., Fox, R.O., Garg, R., Subramaniam, S.: A fully coupled quadrature-based moment method for dilute to moderately dilute fluid-particle flows. Chem. Eng. Sci. 65(7), 2267–2283 (2010)

    Article  Google Scholar 

  41. Pope, S.B.: A more general effective-viscosity hypothesis. J. Fluid Mech. 72(02), 331–340 1975

    Article  MATH  Google Scholar 

  42. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge, United Kingdom (2000)

    Book  MATH  Google Scholar 

  43. Prevost, F., Boree, J., Nuglisch, H.J., Charnay, G.: Measurements of fluid/particle correlated motion in the far field of an axisymmetric jet. Int. J. Multiphase Flow 22(4), 685–701 (1996)

    Article  MATH  Google Scholar 

  44. Rani, S.L., Balachandar, S.: Evaluation of the equilibrium Eulerian approach for the evolution of particle concentration in isotropic turbulence. Int. J. Multiphase Flow 29, 1793–1816 (2003)

    Article  MATH  Google Scholar 

  45. Ranz, W.E., Marshall, W.R.: Evaporation from drops: I. Chem. Eng. Prog. 48, 141–146 (1952)

    Google Scholar 

  46. Reeks, M.W.: On a kinetic equation for the transport of particles in turbulent flows. Phys. Fluids 3(3), 446–456 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  47. Riber, E.: Développement de la méthode de simulation aux grandes échelles pour les écoulements diphasiques turbulents. Ph.D. thesis, Institut National Polytechnique de Toulouse (2007)

  48. Rotta, J.: Statistische theorie nichthomogener turbulenz. I. Z. Phys. 129, 547–572 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  49. Sakiz, M., Simonin, O.: Numerical experiments and modelling of non-equilibrium effects in dilute granular flows. In: Brun, R., Campargue, R., Gatignol, R., Lengrand, J.C. (eds.) Rarefied Gas Dynamics, Proceedings of the 21st International Symposium on Rarefied Gas Dynamics, Cépaduès Editions, vol. 1, pp. 287–294. Marseille (France) (1999)

  50. Schiller, L., Nauman, A.: A drag coefficient correlation. V.D.I. Zeitung 77, 318–320 (1935)

    Google Scholar 

  51. Shotorban, B., Balachandar, S.: Particle concentration in homogeneous shear turbulence simulated via Lagrangian and equilibrium Eulerian approaches. Phys. Fluids 18(6), 065105 (2006)

    Article  Google Scholar 

  52. Sierra-Sánchez, P.: Modeling the dispersion and evaporation of sprays in aeronautical combustion chambers. Ph.D. thesis, Institut National Polytechnique de Toulouse (2012)

  53. Simonin, O.: Second-moment prediction of dispersed phase turbulence in particle-laden flows. In: Proceedings of the 8th Symposium on Turbulent Shear Flows, vol. 1, pp. 741–746. Munich, Federal Republic of Germany, 9–11 September 1991

  54. Simonin, O.: Prediction of the dispersed phase turbulence in particle-laden jets. In: Proceedings of the 4th International Symposium on Gas-Solid Flows, vol. 121, pp. 197–206. ASME FED (1991)

  55. Simonin, O.: Second-moment prediction of the dispersed phase turbulence in particle-laden flows. Annexe 3: third-moment closure. In: Rapport EDF HE44/91.24 (1991)

  56. Simonin, O., Février, P., Laviéville, J.: On the spatial distribution of heavy particle velocities in turbulent flow: from continuous field to particulate chaos. J. Turbul. 3, (N40) (2002)

    Article  Google Scholar 

  57. So, R.M.C., Jin, L.H., Gatski, T.B.: An explicit algebraic Reynolds stress and heat flux model for incompressible turbulence: part I non-isothermal flow. Theor. Comput. Fluid Dyn. 17(5), 351–376 (2004)

    Article  MATH  Google Scholar 

  58. Spencer, A.J.M.: Theory of Invariants. In: Eringen A.C. (ed.) Continuum Physics vol. I, part III. Academic Press, New York (1971)

    Google Scholar 

  59. Struchtrup, H., Torrilhon, M.: Regularization of Gradʼs 13 moment equations: derivation and linear analysis. Phys. Fluids 15, 2668–2680 (2003)

    Article  MathSciNet  Google Scholar 

  60. Torrilhon, M., Struchtrup, H.: Regularized 13-moment equations: shock structure calculations and comparison to Burnett models. J. Fluid Mech. 513, 171–198 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  61. Vermorel, O., Bédat, B., Simonin, O., Poinsot, T.: Numerical study and modelling of turbulence modulation in a particle laden slab flow. J. Turbul. 4, N25 (2003)

    Article  Google Scholar 

  62. Vié, A., Chalons, C., Fox, R.O., Laurent, F., Massot, M.: A multi-Gaussian quadrature method of moments for simulating high stokes number turbulent two-phase flows. In: Annual Research Briefs of the CTR, pp. 309–320 (2011)

  63. Vié, A., Masi, E., Simonin, O., Massot, M.: On the direct numerical simulation of moderate-stokes-number turbulent particulate flows using algebraic-closure-based and kinetic-based moment methods. In: Proceedings of the Center for Turbulence Research (CTR) Summer Program, pp. 355–364 (2012)

  64. Wallin, S., Johansson, A.V.: An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows. J. Fluid Mech. 403, 89–132 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  65. Wikström, P.M., Wallin, S., Johansson, A.V.: Derivation and investigation of a new explicit algebraic model for the passive scalar flux. Phys. Fluids 12(3), 688–702 (2000)

    Article  MATH  Google Scholar 

  66. Wong, C.K., McLennan, J.A., Lindenfeld, M., Dufty, J.W.: Theory of nonlinear transport in Burnett order. J. Chem. Phys. 68, 1563–1573 (1978)

    Article  Google Scholar 

  67. Yuan, C., Fox, R.O.: Conditional quadrature method of moments for kinetic equations. J. Comput. Phys. 230(22), 8216–8246 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  68. Zaichik, L.I.: A statistical model of particle transport and heat transfer in turbulent shear flows. Phys. Fluids 11(6), 1521–1534 (1999)

    Article  MATH  Google Scholar 

  69. Zaichik, L.I., Vinberg, A.A.: Modelling of particle dynamics and heat transfer in turbulent flows using equations for first and second moments of velocity and temperature fluctuations. In: Proceedings of the 8th Symposium on Turbulent Shear Flows, vol. 1, pp. 1021–1026. Munich, Federal Republic of Germany, 9–11 September 1991

  70. Zhou, L.X.: Advances in studies on two-phase turbulence in dispersed multiphase flows. Int. J. Multiphase Flow 36(2), 100–108 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrica Masi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masi, E., Simonin, O. Algebraic-Closure-Based Moment Method for Unsteady Eulerian Simulations of Non-Isothermal Particle-Laden Turbulent Flows at Moderate Stokes Numbers in Dilute Regime. Flow Turbulence Combust 92, 121–145 (2014). https://doi.org/10.1007/s10494-013-9516-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-013-9516-2

Keywords

Navigation