Skip to main content
Log in

Development of Gas-Particle Euler-Euler LES Approach: A Priori Analysis of Particle Sub-Grid Models in Homogeneous Isotropic Turbulence

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A new large eddy simulation (LES) approach for particle-laden turbulent flows in the framework of the Eulerian formalism for inertial particle statistical modelling is developed. Local instantaneous Eulerian equations for the particle cloud are first written using the mesoscopic Eulerian formalism (MEF) proposed by Février et al. (J Fluid Mech 533:1–46, 2005), which accounts for the contribution of an uncorrelated velocity component for inertial particles with relaxation time larger than the Kolmogorov time scale. Second, particle LES equations are obtained by volume filtering the mesoscopic Eulerian ones. In such an approach, the particulate flow at larger scales than the filter width is recovered while sub-grid effects need to be modelled. Particle eddy-viscosity, scale similarity and mixed sub-grid stress (SGS) models derived from fluid compressible turbulence SGS models are presented. Evaluation of such models is performed using three sets of particle Lagrangian results computed from discrete particle simulation (DPS) coupled with fluid direct numerical simulation (DNS) of homogeneous isotropic decaying turbulence. The two phase flow regime corresponds to the dilute one where two-way coupling and inter-particle collisions are not considered. The different particle Stokes number (based on Kolmogorov time scale) are initially equal to 1, 2.2 and 5.1. The mesoscopic field properties are analysed in detail by considering the particle velocity probability function (PDF), correlated velocity power spectra and random uncorrelated velocity moments. The mesoscopic fields measured from DPS+DNS are then filtered to obtain large scale fields. A priori evaluation of particle sub-grid stress models gives comparable agreement than for fluid compressible turbulence models. It has been found that the standard Smagorinsky eddy-viscosity model exhibits the smaller correlation coefficients, the scale similarity model shows very good correlation coefficient but strongly underestimates the sub-grid dissipation and the mixed model is on the whole superior to pure eddy-viscosity model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Février, P., Simonin, O., Squires, K.D.: Partitioning of particle velocities in gas-solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: theoretical formalism and numerical study. J. Fluid Mech. 533, 1–46 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Squires, K.D., Eaton, J.K.: Particle response and turbulence modification in isotropic turbulence. Phys. Fluids, A 2, 1191 (1990)

    Article  ADS  Google Scholar 

  3. Elghobashi, S., Truesdell, G.C.: Direct simulation of particle dispersion in a decaying isotropic turbulence. J. Fluid Mech. 242, 655–700 (1992)

    Article  ADS  Google Scholar 

  4. Boivin, M., Simonin, O., Squires, K.D.: Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. J. Fluid Mech. 375, 235–263 (1998)

    Article  MATH  ADS  Google Scholar 

  5. Massebeuf, V., Bédat, B., Hélie, J., Lauvergne, R., Simonin, O., Poinsot, T.: Direct numerical simulation of evaporating droplets in turbulent flows for prediction of mixture fraction fluctuations: application to combustion simulations. J. Energ. Inst. 13, 361–376 (2006)

    Google Scholar 

  6. Miller, R.S., Bellan, J.: Direct numerical simulation of a confined three-dimensional gas mixing layer with one evaporating hydrocarbon droplet laden stream. J. Fluid Mech. 384, 293–338 (1999)

    Article  MATH  ADS  Google Scholar 

  7. Boivin, M., Simonin, O., Squires, K.D.: On the prediction of gas-solid flows with two-way coupling using Large Eddy Simulation. Phys. Fluids 12, 2080–2090 (2000)

    Article  ADS  Google Scholar 

  8. Laviéville, J., Deutsch, E., Simonin, O.: Large Eddy Simulation of interactions between colliding particles and a homogeneous isotropic turbulence field. In: 6th Symposium on Gas-Solid Flows, vol. 228, pp. 347–357. ASME FED (1995)

  9. Ferrante, A., Elghobashi, S.: On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence. Phys. Fluids 15(2), 315–329 (2003)

    Article  ADS  Google Scholar 

  10. Wang, Q., Squires, K.D.: Large Eddy Simulation of particle-laden turbulent channel flow. Phys. Fluids 8, 1207 (1996)

    Article  MATH  ADS  Google Scholar 

  11. Okong’o, N., Bellan, J.: A priori subgrid analysis of temporal mixing layers with evaporating droplets. Phys. Fluids 12(6), 1573–1591 (2000)

    Article  MATH  ADS  Google Scholar 

  12. Fede, P., Simonin, O.: Numerical study of the subgrid fluid turbulence effects on the statistics of heavy colliding particles. Phys. Fluids 18, 045103 (2006)

    Article  ADS  Google Scholar 

  13. Druzhinin, O.A.: On the 2-way interaction in 2-dimensional particle-laden flows—the accumulation of particles and flow modification. J. Fluid Mech. 297, 49–76 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Druzhinin, O.A., Elghobashi, S.: Direct numerical simulations of bubble-laden turbulent flows using the two-fluid formulation. Phys. Fluids 10, 685–697 (1998)

    Article  ADS  Google Scholar 

  15. Druzhinin, O.A., Elghobashi, S.: On the decay rate of isotropic turbulence laden with microparticles. Phys. Fluids 11(3), 602–610 (1999)

    Article  MATH  ADS  Google Scholar 

  16. Maxey, M.R.: The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174, 441–465 (1987)

    Article  MATH  ADS  Google Scholar 

  17. Ferry, J., Balachandar, S.: A fast Eulerian method for disperse two-phase flow. Int. J. Multiph. Flow 27, 1199–1226 (2001)

    Article  MATH  Google Scholar 

  18. Rani, S.L., Balachandar, S.: Evaluation of the equilibrium Eulerian approach for the evolution of particle concentration in isotropic turbulence. Int. J. Multiph. Flow 29, 1793–1816 (2003)

    Article  MATH  Google Scholar 

  19. Shotorban, B., Balachandar, S.: Particle concentration in homogeneous shear turbulence simulated via Lagrangian and equilibrium Eulerian approaches. Phys. Fluids 18, 065105 (2006)

    Article  ADS  Google Scholar 

  20. Shotorban, B., Balachandar, S.: Two-fluid Large Eddy Simulation approach for gas-particle turbulent flows using equilibrium assumption. In: Proceedings of FEDSM2006. ASME Joint U.S.—European Fluids Engineering Summer Meeting, Miami, 17–20 July 2006

  21. Rani, S.L., Balachandar, S.: Preferential concentration of particles in isotropic turbulence: a comparison of the Lagrangian and the equilibrium Eulerian approaches. Powder Technol. 141, 109–118 (2004)

    Article  Google Scholar 

  22. Kaufmann, A., Moreau, M., Helie, J., Simonin, O.: Comparison between Lagrangian and mesoscopic Eulerian modelling approaches for inertial particle suspended in decaying isotropic turbulence. J. Comput. Phys. 227(13), 6448–6472 (2008)

    Article  MATH  ADS  Google Scholar 

  23. Clark, R.A., Ferziger, J.H., Reynolds, W.C.: Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid Mech. 91, 1–16 (1979)

    Article  MATH  ADS  Google Scholar 

  24. Haworth, D.C., Pope, S.B.: A generalized Langevin model for turbulent flows. Phys. Fluids 30, 1026–1044 (1987)

    Article  ADS  Google Scholar 

  25. Lele, S.: Compact finite difference schemes with spectral like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Vermorel, O., Bédat, B., Simonin, O., Poinsot, T.: Numerical study and modelling of turbulence modulation in particle laden slab flow. J. Turbul. 4, 25 (2003)

    Article  ADS  Google Scholar 

  27. Pope, S.B.: Lagrangian pdf methods for turbulent flows. Annu. Rev. Phys. Mech. 26, 23–63 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  28. Gatignol, R.: The faxen formulae for a rigid particle in an unsteady non uniform stokes flow. J. Mec. Theor. Appl. 9, 143–160 (1983)

    Google Scholar 

  29. Kim, I., Elghobashi, S., Sirignano, W.A.: On the equation for spherical-particle motion: effect of Reynolds and acceleration numbers. J. Fluid Mech. 367, 221–253 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Kaufmann, A., Hélie, J., Simonin, O., Poinsot, T.: Comparison between Lagrangian and Eulerian particle simulations coupled with DNS of homogeneous isotropic decaying turbulence. Proc. Est. Acad. Sci., Eng. 11(2), 91–105 (2002)

    Google Scholar 

  31. Hogan, R.C., Cuzzi, J.N.: Stokes and Reynolds number dependance of preferential particle concentration in simulated three-dimensional turbulence. Phys. Fluids 13, 2938–2944 (2001)

    Article  ADS  Google Scholar 

  32. Salvetti, M.V., Banerjee, S.: A priori tests of a new dynamic subgrid-scale model for finite-difference Large-Eddy Simulations. Phys. Fluids 7, 2831–2847 (1994)

    Article  ADS  Google Scholar 

  33. Simonin, O., Février, P., Laviéville, J.: On the spatial distribution of heavy-particle velocities in turbulent flow: from continuous field to particulate chaos. J. Turbul. 3(40), 1–18 (2002)

    Google Scholar 

  34. Simonin, O.: Combustion and turbulence in two-phase flows. In: Lecture Series 1996-02. von Karman Institute for Fluid Dynamics (1996)

  35. Pandya, R.V.R., Mashayek, F.: Two-fluid Large-Eddy Simulation approach for particle-laden turbulent flows. Int. J. Heat Mass Transfer 45, 4753–4759 (2002)

    Article  MATH  Google Scholar 

  36. Smagorinsky, J.: General circulation experiments with the primitive equations. I: the basic experiment. Mon. Weather Rev. 91(3), 99–165 (1963)

    Article  ADS  Google Scholar 

  37. Speziale, C.G.: Galilean invariance of subgrid-scale stress models in the Large-Eddy Simulation of turbulence. J. Fluid Mech. 156, 55–62 (1985)

    Article  MATH  ADS  Google Scholar 

  38. Erlebacher, G., Hussaini, M.Y., Speziale, C.G., Zang, T.A.: Toward the Large-Eddy Simulation of compressible flows. J. Fluid Mech. 238, 155–185 (1992)

    Article  MATH  ADS  Google Scholar 

  39. Speziale, C.G., Erlebacher, G., Zang, T.A., Hussaini, M.Y.: The subgrid modelling of compressible turbulence. Phys. Fluids 31, 940–942 (1988)

    Article  ADS  Google Scholar 

  40. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale Eddy viscosity model. Phys. Fluids, A 3, 1760–1765 (1991)

    Article  MATH  ADS  Google Scholar 

  41. Moin, P., Squires, K., Cabot, W., Lee, S.: A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids, A 3, 2746–2757 (1991)

    Article  MATH  ADS  Google Scholar 

  42. Deardorff, J.W.: On the magnitude of the subgrid scale Eddy viscosity coefficient. J. Comput. Phys. 7, 120–133 (1971)

    Article  MATH  ADS  Google Scholar 

  43. Lesieur, M., Métais, O.: New trends in Large Eddy Simulation of turbulence. Annu. Rev. Fluid. Mech. 28, 45–82 (1996)

    Article  ADS  Google Scholar 

  44. Vreman, B., Geurts, B., Kuerten, H.: Comparison of numerical schemes in Large Eddy Simulation of the temporal mixing layer. Int. J. Numer. Methods Fluids 22, 297 (1996)

    Article  MATH  ADS  Google Scholar 

  45. Deardorff, J.W.: A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41, 453–480 (1970)

    Article  MATH  ADS  Google Scholar 

  46. Riber, E., Moureau, V., Garcia, M., Poinsot, T., Simonin, O.: Evaluation of numerical strategies for Large Eddy Simulation of particulate two-phase recirculating flows. J. Comput. Phys. 228(2), 539–564 (2009)

    Article  MATH  ADS  Google Scholar 

  47. Boileau, M., Pascaud, S., Riber, E., Cuenot, B., Gicquel, L.Y.M., Poinsot, T.J., Cazalens, M.: Investigation of two-fluid methods for Large Eddy Simulation of spray combustion in gas turbines. Flow Turbul. Combust. 80(3), 291–321 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Bédat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreau, M., Simonin, O. & Bédat, B. Development of Gas-Particle Euler-Euler LES Approach: A Priori Analysis of Particle Sub-Grid Models in Homogeneous Isotropic Turbulence. Flow Turbulence Combust 84, 295–324 (2010). https://doi.org/10.1007/s10494-009-9233-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-009-9233-z

Keywords

Navigation