Skip to main content
Log in

LES of the Sandia Flame D Using Laminar Flamelet Decomposition for Conditional Source-Term Estimation

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A variation of the Laminar Flamelet Decomposition (LFD) method for the Conditional Source Term (CSE) model developed by Bushe and Steiner (Phys Fluids 15:1564–1575, 2003) is implemented into an existing LES code. In this approach, the set of basis functions, on which the decomposition is based, is reduced using the mixture fraction dissipation rate as external parameter for the selection. It was found that reducing the basis improves and stabilises the inversion, resulting in reasonably accurate approximation for the average conditional quantities. Some modifications have been introduced to improve the inversion process by reducing the number of flamelets. This modification is found to help stabilize the inversion and keep the dimension of the linear system small. The model is used to simulate the turbulent non-premixed piloted SANDIA Flame D. Reasonably good predictions for conditional and unconditional average variables were found for different planes and at centreline of the flow field. However, an over prediction of the consumption rate in the near field of the flame is found, which may be partially attributed to the use of the Steady Laminar Flamelets (SLF) as functions for the decomposition and the use of a constant boundary condition for the species mass fractions in solving the flamelets. The present simulation of a turbulent reacting jet is the first test of the LFD approach in a realistic scenario using only the temperature field to calculate the inversion. The model is found to be computationally inexpensive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bushe, W., Steiner, H.: Laminar flamelet decomposition for conditional source-term estimation. Phys. Fluids 15, 1564–1575 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  2. Montgomery, C., Kosály, G., Riley, J.: Direct numerical simulation of turbulent nonpremixed combustion with multistep hydrogen-oxygen kinetics. Combust. Flame 109, 113–144 (1997)

    Article  Google Scholar 

  3. Pantano, C., Sarkar, S., Williams, F.: Mixing of a conserved scalar in a turbulent reacting shear layer. J. Fluid Mech. 481, 291–328 (2003)

    Article  MATH  ADS  Google Scholar 

  4. Bushe, W., Bilger, R.: Direct numerical simulation of turbulent non-premixed combustion with realistic chemistry. Paper presented at the Proceeding of the Summer Program (1998)

  5. Mahalingam, S., Chen, J., Vervisch, L.: Finite-rate chemistry and transiennt effects in direct numerical simulations of turbulent non-premixed flames. Combust. Flame 102, 285–297 (1995)

    Article  Google Scholar 

  6. Veynante, D., Vervisch, L.: Turbulent combustion modeling. Prog. Energy Combust. 28, 193–266 (2002)

    Article  Google Scholar 

  7. Bray, K.: The challenge of turbulent combustion. Proc. Combust. Inst. 26, 1–26 (1996)

    Google Scholar 

  8. Spalding, D.: Mathematical models of turbulent flames: a review. Combust. Sci. Technol. 13, 3–25 (1973)

    Google Scholar 

  9. Peters, N.: Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. 10, 319–339 (1984)

    Article  Google Scholar 

  10. Bilger, R.: Conditional moment closure for turbulent reacting flow. Phys. Fluids 5, 237–234 (1993)

    Google Scholar 

  11. Cook, A., Riley, J.: A subgrid model for equilibrium chemistry in turbulent flows. Phys. Fluids 6, 2868 (1994)

    Article  ADS  Google Scholar 

  12. Desjardin, P., Frankel, S.: Assessment of turbulent combustion submodels using the linear eddy model. Combust. Flame 104, 343–357 (1996)

    Article  Google Scholar 

  13. Cook, A., Riley, J., Kosály, G.: A laminar flamelet approach to subgrid-scale chemistry in turbulent flows. Combust. Flame 109, 332–341 (1997)

    Article  Google Scholar 

  14. Colucci, P., Jaberi, F., Givi, P., Pope, S.: Filtered density function for large eddy simulation of turbulent reacting flows. Phys. Fluids 10, 499–515 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Cook, A., Riley, J.: Subgrid-scale modeling for turbulent reacting flows. Combust. Flame 112, 593–606 (1998)

    Article  Google Scholar 

  16. Pitsch, H., Chen, M., Peters, N.: Unsteady flamelet modeling of turbulent hydrogen/air diffusion flames. Proc. Combust. Inst. 27, 1057–1064 (1998)

    Google Scholar 

  17. Kerstein, A.: A linear-eddy model of turbulent scalar transport and mixing. Combust. Sci. Technol. 60, 391–421 (1988)

    Article  Google Scholar 

  18. Bray, K., Libby, P.: Recent developments in the BML model of premixed turbulent combustion. In: Turbulent Reacting Flows. Academic Press Limited, London (1993)

    Google Scholar 

  19. Pope, S.: Pdf methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119–192 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  20. Chen, J., Kollman, W., Dibble, R.: Pdf modeling of turbulent nonpremixed methane jet flames. Combust. Sci. Technol. 64, 315–346 (1989)

    Article  Google Scholar 

  21. Guo, Z., Zhang, H., Chan, C., Lin, W.: Presumed joint probability density function model for turbulent combustion. Fuel (Guildford) 82, 1091–1101 (2003)

    Article  Google Scholar 

  22. Cao, R.R., Pope, S.B.: The influence of chemical mechanism on PDF calculations of nonpremixed piloted jet flames. Combust. Flame 143, 450–470 (2005)

    Article  Google Scholar 

  23. Wang, H., Chen, Y.: PDF modelling of turbulent non-premixed combustion with detailed chemistry. Chem. Eng. Sci. 59, 3477–3490 (2004)

    Article  Google Scholar 

  24. Wall, C., Boersma, B., Moin, P.: An evaluation of the assumed beta probability density function subgrid-scale model for large eddy simulation of nonpremixed, turbulent combustion with heat release. Phys. Fluids 12, 2522 (2000)

    Article  ADS  Google Scholar 

  25. Pierce, C., Moin, P.: A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar. Phys. Fluids 10, 3041 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Pitsch, H., Steiner, H.: Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D). Phys. Fluids 12, 2541–2554 (2000)

    Article  ADS  Google Scholar 

  27. Pitsch, H.: Unsteady flamelet modeling of differential diffusion in turbulent jet diffusion flames. Combust. Flame 123, 358–374 (2000)

    Article  Google Scholar 

  28. Wang, H., Chen, Y.: Steady flamelet modelling of a turbulent non-premixed flame considering scalar dissipation rate fluctuations. Fluid Dyn. Res. 37, 133–153 (2005)

    Article  MATH  ADS  Google Scholar 

  29. Fairweather, M., Woolley, R.M.: First-order conditional moment closure modeling of turbulent, nonpremixed methane flames. Combust. Flame 138, 3–19 (2004)

    Article  Google Scholar 

  30. Kim, S.H., Huh, K.Y.: Second-order conditional moment closure modeling of turbulent piloted Jet diffusion flames. Combust. Flame 138, 336–352 (2004)

    Article  Google Scholar 

  31. Pitsch, H.: Extended flamelet model for LES of non-premixed combustion. Center for Turbulence Research (2000)

  32. Klimenko, A.: Multicomponent diffusion of various scalars in turbulent flows. Fluid Dyn. 25, 327–334 (1990)

    Article  MATH  Google Scholar 

  33. Kronenburg, A., Bilger, R., Kent, J.: Computation of conditional average scalar dissipation in turbulent jet diffusion flames. Flow Turbul. Combust. 64, 145–159 (2000)

    Article  MATH  Google Scholar 

  34. Devaud, C., Bray, K.: Assessment of the applicability of conditional moment closure to a lifted turbulent flame: first order model. Combust. Flame 132, 102–114 (2003)

    Article  Google Scholar 

  35. Barlow, R., Smith, N., Chen, J., Bilger, R.: Nitric oxide formation in dilute hydrogen jet flames: isolation of the effects of radiation and turbulence-chemistry submodels. Combust. Flame 117, 4–31 (1999)

    Article  Google Scholar 

  36. Kim, S., Huh, K.: Application of the elliptic conditional moment closure model to a two-dimensional nonpremixed methanol bluff-body flame. Combust. Flame 120, 75–90 (2000)

    Article  Google Scholar 

  37. Swaminathan, N., Bilger, R.: Assessment of combustion submodels for turbulent nonpremixed hydrocarbon flames. Combust. Flame 116, 519–545 (1999)

    Article  Google Scholar 

  38. Kronenburg, A., Bilger, R.: Modelling differential diffusion in nonpremixed reacting turbulent flow: application to turbulent jet flames. Combust. Sci. Technol. 166, 175–194 (2001)

    Article  Google Scholar 

  39. Bushe, W., Steiner, H.: Conditional moment closure for large eddy simulation of nonpremixed turbulent reaction flows. Phys. Fluids 11, 1896 (1999)

    Article  ADS  Google Scholar 

  40. Steiner, H., Bushe, R.: Large eddy simulation of a turbulent reacting jet with conditioanl source-term estimation. Phys. Fluids 13, 754–769 (2001)

    Article  ADS  Google Scholar 

  41. Twomey, S.: Introduction to the mathematics of inversion in remote sensing and indirect measurements, Developments in geomathematics. Elsevier scientific publishing company, Amsterdam (1977)

    Google Scholar 

  42. Grout, R., Bushe, W.: Analysis of the sandia flame D using an implementation of conditional source-term estimation in a commercial RANS solver. Dept. of Mechanical Engineering, University of British Columbia (2004)

  43. Willian, H., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical recipes in C. pp. 788–826 (1992)

  44. Moin, P., Pierce, C.: A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar. Phys. Fluids 10, 3041 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. Pitsch, H., Chen, M., Peters, N.: Unsteady flamelet modeling of turbulent hydrogen-air diffusion flames. Symposium (International) on Combustion 27, 1057–1064 (1998)

    Article  Google Scholar 

  46. Smith, N., Gore, J., Kim, J.: http://www.ca.sandia.gov/tdf/Workshop/Submodels.html (1998)

  47. Pitsch, H.: FlameMaster: a C++ computer program for 0D combustion and 1D laminar flame calculations (1996)

  48. Peters, N., Rogg, B.: Reduced kinetic mechanism for applications in combustion systems. Springer, Ed. (1993)

  49. Girimaji, S., Zhou, Y.: Analysis and modeling of subgrid scalar mixing using numerical data. Phys. Fluids 8, 1224 (1996)

    Article  MATH  ADS  Google Scholar 

  50. McGrattan, K.: Fire dynamics simulator - Technical Reference Guide. NIST (2002)

  51. Rehm, R., Baum, R.: The equation of motion for thermally driven buoyant flows. Natl. Bur. Stand. J. Res. 83, 297–308 (1978)

    MATH  Google Scholar 

  52. Xin, Y., Gore, J., McGrattan, K., Rehm, R., Baum, R.: Fire dynamics simulation of a turbulent buoyant flame using a mixture-fraction-based combustion model. Combust. Flame 141, 329–335 (2005)

    Article  Google Scholar 

  53. Ferraris, S.A., Wen, J.X., Dembele, S.: Large eddy simulation of a lifted turbulent jet flame. Combust. Flame 140, 320–339 (2007)

    Article  Google Scholar 

  54. Smagorinsky, J.: General circulation experiments with the primitive equations, Part I. The Basic Experiments. Mon. Weather Rev. 91, 99–152 (1963)

    Article  ADS  Google Scholar 

  55. McGrattan, K., Rehm, R., Baum, R.: Fire-driven flows in enclosure. J. Comp. Phys. 110, 285–291 (1993)

    Article  ADS  Google Scholar 

  56. Barlow, R., Frank, J.: Piloted CH4/Air flame C, D, E and F-Release 2.1. Sandia National Laboratories (2007)

  57. Barlow, R., Frank, J.: Effect of turbulence on species mass fractions in methane/jet flames. Proc. Combust. Inst. 27, 1087–1095 (1998)

    Google Scholar 

  58. Barlow, R.S., Frank, J.H., Karpetis, A.N., Chen, J.-Y.: Piloted methane/air jet flames: transport effects and aspects of scalar structure. Combust. Flame 143, 433–449 (2005)

    Article  Google Scholar 

  59. Kempf, A., Flemming, F., Janicka, J.: Investigation of lengthscales, scalar dissipation, and flame orientation in a piloted diffusion flame by LES. Proc. Combust. Inst. 30, 557–565 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. X. Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferraris, S.A., Wen, J.X. LES of the Sandia Flame D Using Laminar Flamelet Decomposition for Conditional Source-Term Estimation. Flow Turbulence Combust 81, 609–639 (2008). https://doi.org/10.1007/s10494-008-9158-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-008-9158-y

Keywords

Navigation