Skip to main content
Log in

A Priori Evaluation of the Laminar Flamelet Decomposition Model for Turbulent Premixed Flames using DNS Data

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Laminar flamelet decomposition (LFD) is a dynamic approach for modelling sub-filter scale turbulence-chemistry interactions in Large-Eddy Simulations using a stretched flamelet library. In this work, the performance of the LFD model – that was previously used only in non-premixed combustion—is investigated a priori for premixed combustion using positively-strained flamelets in the reactant-to-product configuration. For this purpose, a DNS database of methane-air premixed flames is utilized. The flames are propagating in a rectangular box under homogeneous isotropic turbulence conditions over a wide range of Karlovitz numbers. The results show that the LFD model can correctly account for the sub-filter scale turbulence-chemistry interactions to predict the filtered reaction rates and the filtered scalar field, provided that turbulent and laminar mixing are well predicted. The deviations from the DNS results are attributed to the shortcomings of the strained flamelet library and the non-flamelet effects. Finally, the LFD results are compared with a different sub-filter scale model using the same strained flamlelet library, and the relative performances of the two models are discussed.—

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Bilger, R.W.: Conditional moment closure for turbulent reacting flow. Phys. Fluids 5, 436–444 (1993)

    Article  MATH  Google Scholar 

  • Bradley, D.: How fast can we burn? Proc. Combust. Inst. 24(1), 247–262 (1992)

    Article  Google Scholar 

  • Bradley, D., Gaskell, P.H., Gu, X.: Burning velocities, markstein lengths, and flame quenching for spherical methane-air flames: a computational study. Combust. Flame 104(1–2), 176–198 (1996)

    Article  Google Scholar 

  • Bradley, D., Kwa, L.K., Lau, A.K.C., Missaghi, M., Chin, S.B.: Laminar flamelet modeling of recirculating premixed methane and propane-air combustion. Combust. Flame 71, 109–122 (1988)

    Article  Google Scholar 

  • Bray, K.N.C., Champion, M., Libby, P.A., Swaminathan, N.: Finite rate chemistry and presumed pdf models for premixed turbulent combustion. Combust. Flame 146, 665–673 (2006)

    Article  Google Scholar 

  • Bray, K.N.C., Libby, P.A., Moss, J.B.: Unified modelling approach for premixed turbulent combustion - Part I: general formulation. Combust. Flame 61, 87–102 (1985)

    Article  Google Scholar 

  • Bray, K.N.C., Moss, J.B.: A unified statistical model of the premixed turbulent flame. Acta Astronaut. 4(3), 291–319 (1977)

    Article  Google Scholar 

  • Bushe, W.K., Steiner, H.: Conditional moment closure for large eddy simulation of non-premixed turbulent reacting flows. Phys. Fluids 11, 1896–1906 (1999)

    Article  MATH  Google Scholar 

  • Bushe, W.K., Steiner, H.: Laminar flamelet decomposition for conditional source-term estimation. Phys. Fluids 15(6), 1564–1575 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Domingo, P., Vervisch, L., Payet, S., Hauguel, R.: DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry. Combust. Flame 143, 566–586 (2005)

    Article  Google Scholar 

  • Driscoll, J.F.: Turbulent premixed combustion: flamelet structure and its effect on turbulent burning velocities. Prog. Energy Combust. Sci. 34, 91–134 (2008)

    Article  Google Scholar 

  • Duwig, C., Nogenmyr, K.J., Chan, C..k., Dunn, M..J..: Large eddy simulations of a piloted lean premix jet flame using finite-rate chemistry. Combust. Theor. Model. 15(4), 537–568 (2011)

    Article  MATH  Google Scholar 

  • Fiorina, B., Vicquelin, R., Auzillon, P., Darabiha, N., Gicquel, O., Veynante, D.: A filtered tabulated chemistry model for LES of premixed combustion. Combust. Flame 157, 465–475 (2010)

    Article  Google Scholar 

  • de Frahan, M.T.H., Yellapantula, S., King, R., Day, M.S., Grout, R.W.: Deep learning for presumed probability density function models. Combust. Flame 208, 436–450 (2019)

    Article  Google Scholar 

  • Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic sub-grid scale eddy viscosit model. Phys. Fluids 3, 1760–1765 (1991)

    Article  MATH  Google Scholar 

  • Goodwin, D.G.: Cantera: Object-oriented software for reacting flows. http://www.cantera.org

  • Grout, R.W., Bushe, W.K., Blair, C.: Predicting the ignition delay of turbulent methane jets using conditional source-term estimation. Combust. Theor. Model. 11, 1009–1028 (2007)

    Article  MATH  Google Scholar 

  • Hawkes, E.R., Chen, J.H.: Comparison of direct numerical simulation of lean premixed methane-air flames with strained laminar flame calculations. Combust. Flame 144, 112–125 (2006)

    Article  Google Scholar 

  • Herrmann, M.: Numerical simulation of turbulent bunsen flames with a level set flamelet model. Combust. Flame 145, 357–375 (2006)

    Article  Google Scholar 

  • Huang, J., Bushe, W.K.: Simulation of an igniting methane jet using conditional source-term estimation with a trajectory generated low-dimensional manifold. Combust. Theor. Model. 11, 977–1008 (2007)

    Article  MATH  Google Scholar 

  • Ihme, M., Cha, C.M., Pitsch, H.: Prediction of local extinction and re-ignition effects in non-premixed turbulent combustion using a flamelet/progress variable approach. Proc. Comb. Inst. 30(1), 793–800 (2005)

    Article  Google Scholar 

  • Jin, B., Grout, R., Bushe, W.: Conditional source-term estimation as a method for chemical closure in premixed turbulent reacting flow. Flow Turbul. Combust. 81(4), 563–582 (2008)

    Article  MATH  Google Scholar 

  • Jin, B.: Conditional source-term estimation methods for turbulent reacting flows. Ph.D. thesis, University of Brithish Columbia, Canada (2007)

  • Kee, R.J., Miller, J.A., Evans, G.H., Dixon-Lewis, G.: A computational model of the structure and extinction of strained, opposed flow, premixed methane-air flames. In: Symposium (International) on Combustion, vol. 22, pp. 1479–1494 (1989)

  • Klimenko, A.Y., Bilger, R.W.: Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci. 25, 595–687 (1999)

    Article  Google Scholar 

  • Knudsen, E., Kolla, H., Hawkes, E.R., Pitsch, H.: LES of a premixed jet flame DNS using a strained flamelet model. Combust. Flame 160(12), 2911–2927 (2013)

    Article  Google Scholar 

  • Kolla, H., Swaminathan, N.: Strained flamelets for turbulent premixed flames, i: formulation and planar flame results. Combust. Flame 157, 943–954 (2010)

    Article  Google Scholar 

  • Langella, I., Swaminathan, N., Pitz, R.W.: Application of unstrained flamelet SGS closure for multi-regime premixed combustion. Combust. Flame 173, 161–178 (2016)

    Article  Google Scholar 

  • Langella, I., Swaminathan, N., Williams, F.A., Furukawa, J.: Large-Eddy simulation of premixed combustion in the corrugated-flamelet regime. Combust. Sci. Technol. 188(9), 1565–1591 (2016)

    Article  Google Scholar 

  • Law, C.K., Zhu, D., Yu, G.: Propagation and extinction of stretched premixed flames. In: Symposium (International) on Combustion, vol. 21, pp. 1419–1426 (1988)

  • Lawson, C.L., Hanson, R.J.: Solving least square problems. Prentice-Hall (1974)

  • Lecocq, G., Richard, S., Colin, O., Vervisch, L.: Hybrid presumed pdf and flame surface density appoaches for large-eddy simulation of premixed turbulent combustion. part 1: Formalism and simulation of a quasi-steady burner. Combust. Flame 158, 1201–1214 (2011)

    Article  Google Scholar 

  • Libby, P.A., Bray, K.N.C., Moss, J.B.: Effects of finite reaction rate and molecular transport in premixed turbulent combustion. Combust. Flame 34, 285–301 (1979)

    Article  Google Scholar 

  • Libby, P.A., Williams, F.A.: Structure of laminar flamelets in premixed turbulent flames. Combust. Flame 44(1–3), 287–303 (1982)

    Article  Google Scholar 

  • Maas, U., Pope, S.B.: Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88, 239–264 (1992)

    Article  Google Scholar 

  • Mukhopadhyay, S., Van Oijen, J., De Goey, L.: A comparative study of presumed PDFs for premixed turbulent combustion modeling based on progress variable and its variance. Fuel 159, 728–740 (2015)

    Article  Google Scholar 

  • Nambully, S., Domingo, P., Moureau, V., Vervisch, L.: A filtered-laminar-flame PDF sub-grid scale closure for LES of premixed turbulent. Part I: formalism and application to a bluff-body burner with differential diffusion. Combust. Flame 161(7), 1756–1774 (2014)

    Article  Google Scholar 

  • Navarro-Martinez, S., Kronenburg, A., Mare, F.D.: Conditional moment closure for large eddy simulations. Flow Turbul. Combust. 75, 245–247 (2005)

    Article  MATH  Google Scholar 

  • Nilsson, T., Carlsson, H., Yu, R., Bai, X.S.: Structures of turbulent premixed flames in the high Karlovitz number regime - DNS analysis. Fuel 216, 627–638 (2018)

    Article  Google Scholar 

  • Nilsson, T., Langella, I., Doan, N.A.K., Swaminathan, N., Yu, R., Bai, X.S.: A priori analysis of sub-grid variance of a reactive scalar using DNS data of high Ka flames. Combust. Theory Model. 23(5), 885–906 (2019)

    Article  MathSciNet  Google Scholar 

  • Nilsson, T., Yu, R., Doan, N.A.K., Langella, I., Swaminathan, N., Bai, X.S.: Filtered reaction rate modelling in moderate and high karlovitz number flames: an a priori analysis. Flow Turbul. Combust. 103, 643–665 (2019)

    Article  Google Scholar 

  • van Oijen, J.A., de Goey, L.P.H.: Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol. 161, 113–137 (2000)

    Article  Google Scholar 

  • Van Oijen, J., De Goey, L.: Modelling of premixed counterflow flames using the flamelet-generated manifold method. Combust. Theor. Model. 6(3), 463–478 (2002)

    Article  Google Scholar 

  • Peters, N.: Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 10, 319–339 (1984)

    Article  Google Scholar 

  • Peters, N.: The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech. 384, 107–132 (1999)

    Article  MATH  Google Scholar 

  • Pfitzner, M.: A new analytic pdf for simulations of premixed turbulent combustion. Flow Turbul, Combust (2020)

  • Pitsch, H., Chen, M., Peters, N.: Unsteady flamelet modeling of turbulent hydrogen-air diffusion flames. In: Symposium (international) on combustion, vol. 27, pp. 1057–1064 (1998)

  • Pitz, R.W., Hu, S., Wang, P.: Tubular premixed and diffusion flames: effect of stretch and curvature. Prog. Energy Combust. Sci. 42, 1–34 (2014)

    Article  Google Scholar 

  • Pope, S.B.: Pdf methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119–192 (1985)

    Article  Google Scholar 

  • Pope, S.B.: Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6, 35–35 (2004)

    Article  Google Scholar 

  • Pope, S.B., Maas, U.: Simplifying chemical kinetics: Intrinsic low-dimensional manifolds. Tech. Rep. 11, Cornell University Report No. FDA 93-11 (1993)

  • Ren, Z., Pope, S.B., Vladimirsky, A., Guckenheimer, J.M.: The invariant constrained equilibrium edge preimage curve method for the dimensional reduction of chemical kinetics. J. Chem. Phys. 124, 114111 (2006)

    Article  Google Scholar 

  • Rogg, B.: Response and flamelet structure of stretched premixed methane-air flames. Combust. Flame 73(1), 45–65 (1988)

    Article  Google Scholar 

  • Salehi, M.M., Bushe, W.K.: Presumed PDF modeling for RANS simulation of turbulent premixed flames. Combust. Theor. Model. 14, 381–403 (2010)

    Article  MATH  Google Scholar 

  • Salehi, M.M., Bushe, W.K., Shahbazian, N., Groth, C.P.T.: Modified laminar flamelet presumed probability density function for LES of premixed turbulent combustion. Proc. Comb. Inst. 34(1), 1203–1211 (2013)

    Article  Google Scholar 

  • Scholtissek, A., Domingo, P., Vervisch, L., Hasse, C.: A self-contained composition space solution method for strained and curved premixed flamelets. Combust. Flame 207, 342–355 (2019)

    Article  Google Scholar 

  • Scholtissek, A., Domingo, P., Vervisch, L., Hasse, C.: A self-contained progress variable space solution method for thermochemical variables and flame speed in freely-propagating premixed flamelets. Proc. Comb. Inst. 37(2), 1529–1536 (2019)

    Article  Google Scholar 

  • Shahbazian, N., Salehi, M.M., Groth, C.P.T., Gulder, O.L., Bushe, W.K.: Performance of conditional source-term estimation model for LES of turbulent premixed flames in thin reaction zones regime. Proc. Combust. Inst. 35(2), 1367–1375 (2015)

    Article  Google Scholar 

  • Skiba, A.W., Wabel, T.M., Carter, C.D., Hammack, S.D., Temme, J.E., Driscoll, J.F.: Premixed flames subjected to extreme levels of turbulence part I: flame structure and a new measured regime diagram. Combust. Flame 189, 407–432 (2018)

    Article  Google Scholar 

  • Smooke, M.D., Giovangigli, V.: Formulation of the premixed and nonpremixed test problems. In: Smooke, M.D. (ed.) Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames: A Topical Volume. Lecture Notes in Physics, pp. 1–28. Springer, Berlin Heidelberg, Berlin, Heidelberg (1991)

  • Swaminathan, N., Bilger, R.W.: Analysis of conditional moment closure for turbulent premixed flame. Combust. Theor. Model. 5, 241–260 (2001)

    Article  MATH  Google Scholar 

  • Trisjono, P., Kleinheinz, K., Hawkes, E.R., Pitsch, H.: Modeling turbulence-chemistry interaction in lean premixed hydrogen flames with a strained flamelet model. Combust. Flame 174, 194–207 (2016)

    Article  Google Scholar 

  • Trisjono, P., Pitsch, H.: A direct numerical simulation study on NO formation in lean premixed flames. Proc. Comb. Inst. 36(2), 2033–2043 (2017)

    Article  Google Scholar 

  • Tsui, H.P., Bushe, W.K.: Linear-eddy model formulated probability density function and scalar dissipation rate models for premixed combustion. Flow Turbul. Combust. 93(3), 487–503 (2014)

    Article  Google Scholar 

  • Wang, M., Bushe, W.K.: Conditional source-term estimation with laminar flamelet decomposition in large eddy simulation of a turbulent nonpremixed flame. Phys. Fluids 19(11), 115103 (2007)

    Article  MATH  Google Scholar 

  • Wang, H., Hawkes, E.R., Chen, J.H.: A direct numerical simulation study of flame structure and stabilization of an experimental high ka ch4/air premixed jet flame. Combust. Flame 180, 110–123 (2017)

    Article  Google Scholar 

  • Williams, F.A.: Turbulent combustion. In: J.D. Buckmaster (ed.) Math. Combust., pp. 97–132. SIAM (1985)

  • Yu, R., Bai, X.S.: A fully divergence-free method for generation of inhomogeneous and anisotropic turbulence with large spatial variation. J. Comput. Phys. 256, 234–253 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Yu, R., Nillson, T., Bai, X.S., Lipatnikov, A.N.: Evolution of averaged local premixed flame thickness in a turbulent flow. Combust. Flame 207, 232–249 (2019)

    Article  Google Scholar 

  • Yu, R., Yu, J., Bai, X.S.: An improved high-order scheme for DNS of low Mach number turbulent reacting flows based on stiff chemistry solver. J. Comput. Phys. 231(16), 5504–5521 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Prof. Xue-Song Bai, Department of Energy Sciences, Lund University, for providing the DNS data. The authors also sincerely thank Dr. Graham Hendra, Department of Mechanical Engineering, The University of British Columbia, for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mahdi Salehi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdipour, A.H., Salehi, M.M. A Priori Evaluation of the Laminar Flamelet Decomposition Model for Turbulent Premixed Flames using DNS Data. Flow Turbulence Combust 108, 149–180 (2022). https://doi.org/10.1007/s10494-021-00271-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-021-00271-0

Keywords

Navigation