Amrine JWJ, Stasny TA (1994) Catalog of the Eriophyoidea (Acarina: Prostigmata) of the World. Indira Publishing House, West Bloomfield
Google Scholar
Barke HE, Davis R, Hunter PE (1972) Studies on peach silvermite, Aculus cornutus (Acarina: Eriophyoidea). J Georgia Ent Soc 7:171–178
Google Scholar
Bell JR, Bohan DA, Shaw EM, Weyman GS (2005) Ballooning dispersal using silk: world fauna, phylogenies, genetics and models. Bull Entomol Res 95:69–114. https://doi.org/10.1079/BER2004350
CAS
Article
PubMed
Google Scholar
Bonte D, Vandenbroecke N, Lens L, Maelfait JP (2003) Low propensity for aerial dispersal in specialist spiders from fragmented landscapes. Proc R Soc B 270:1601–1607. https://doi.org/10.1098/rspb.2003.2432
Article
PubMed
PubMed Central
Google Scholar
Bonte D, Van Dyck H, Bullock JM et al (2012) Costs of dispersal. Biol Rev 87:290–312. https://doi.org/10.1111/j.1469-185X.2011.00201.x
Article
PubMed
Google Scholar
Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev 80:205–225. https://doi.org/10.1017/S1464793104006645
Article
PubMed
Google Scholar
Brey CW (1998) Epidemiology of wheat curl mite (Aceria tosichella K.) and wheat streak mosaic virus on feral grass species and effect of glyphosate on wheat curl mite dispersal. Ph.D. Dissertation, Montana State University, Bozeman
Byamukama E, Tatineni S, Hein GL et al (2012) Effects of single and double infections of winter wheat by Triticum mosaic virus and Wheat streak mosaic virus on yield determinants. Plant Dis 96:859–864. https://doi.org/10.1094/PDIS-11-11-0957-RE
CAS
Article
PubMed
Google Scholar
Catford JA, Vesk PA, White MD, Wintle BA (2011) Hotspots of plant invasion predicted by propagule pressure and ecosystem characteristics. Divers Distrib 17:1099–1110
Article
Google Scholar
Clobert J, Danchin E, Dhondt AA, Nichols JD (2001) Dispersal. Oxford University Press, Oxford
Google Scholar
Clobert J, Baguette M, Benton TG, Bullock JM (2012) Dispersal ecology and evolution. Oxford University Press, Oxford
Book
Google Scholar
Dabert M, Witaliński W, Kaźmierski A et al (2010) Molecular phylogeny of acariform mites (Acari, Arachnida): strong conflict between phylogenetic signal and long-branch attraction artifacts. Mol Phylogenet Evol 56:222–241. https://doi.org/10.1016/j.ympev.2009.12.020
Article
PubMed
Google Scholar
Dominguez Almela V, Palmer SCF, Gillingham PK et al (2020) Integrating an individual-based model with approximate Bayesian computation to predict the invasion of a freshwater fish provides insights into dispersal and range expansion dynamics. Biol Invasions 22:1461–1480. https://doi.org/10.1007/s10530-020-02197-6
Article
Google Scholar
Drake JM, Lodge DM (2006) Allee effects, propagule pressure and the probability of establishment: risk analysis for biological invasions. Biol Invasions 8:365–375. https://doi.org/10.1007/s10530-004-8122-6
Article
Google Scholar
Duffner K, Schruft G, Guggenheim R (2001) Passive dispersal of the grape rust mite Calepitrimerus vitis Nalepa 1905 (Acari, Eriophyoidea) in vineyards. J Pest Sci 74:1–6. https://doi.org/10.1046/j.1439-0280.2001.01001.x
Article
Google Scholar
Dunning JBJ, Stewart DJ, Danielson BJ, Noon BR, Root TL, Lamberson H, Stevens EE (1995) Spatially explicit population models: current forms and future uses. Ecol Appl 5:3–11
Article
Google Scholar
Frost WE (1997) Polyphenic wax production in Abacarus hystrix (Acari: Eriophyidae), and implications for migratory fitness. Physiol Entomol 22:37–46. https://doi.org/10.1111/j.1365-3032.1997.tb01138.x
Article
Google Scholar
Frost CM, Allen WJ, Courchamp F et al (2019) Using network theory to understand and predict biological invasions. Trends Ecol Evol 34:831–843. https://doi.org/10.1016/j.tree.2019.04.012
Article
PubMed
Google Scholar
Gabi G, Mészáros Z (2003) Examination of the development of the deutogynes of Calepitrimerus vitis Nalepa in the vine-growing region of Szekszárd, Hungary (Acari: Eriophyidae). Acta Phytopathol Entomol Hungarica 38:369–376. https://doi.org/10.1556/APhyt.38.2003.3-4.18
Article
Google Scholar
Galvão AS, Melo JWS, Monteiro VB et al (2012) Dispersal strategies of Aceria guerreronis (Acari: Eriophyidae), a coconut pest. Exp Appl Acarol 57:1–13. https://doi.org/10.1007/s10493-012-9527-z
Article
PubMed
Google Scholar
Gibson WW, Painter RH (1957) Transportation by aphids of the wheat curl mite, Aceria tulipae (K.), a vector of the Wheat Streak Mosaic Virus. J Kans Entomol Soc 30:147–153
Google Scholar
Gillespie RL, Roberts DE, Bentley EM (1997) Population dynamics and dispersal of wheat curl mites (Acari: Eriophyidae) in North Central Washington. J Kans Entomol Soc 70:361–364
Google Scholar
Griffith R (1984) The problem of the coconut mite, Eriophyes guerreronis (Keifer), in the coconut groves of Trinidad and Tobago. In: Webb R, Knausenberger W, Yntema L (eds) Proceedings of the 20th annual meeting of the Caribbean food crops society, St. Croix, U.S. Virgin Islands, Oct 21–26 1984. East. Caribbean Cent., Coll. Virgin Islands & Caribbean Food Crops Soc., pp 128–132
Hanski I (1999) Metapopulation ecology. Oxford University Press, Oxford
Google Scholar
Hanski I, Gilpin ME (1997) Metapopulation biology: ecology, genetics and evolution. Academic Press, San Diego
Google Scholar
Harvey TL, Martin TJ (1980) Effects of wheat pubescence on infestations of wheat curl mite and incidence of wheat streak mosaic. J Econ Entomol 73:225–227
Article
Google Scholar
Harvey TL, Martin TJ (1988) Sticky tape method to measure cultivar effect on wheat curl mite population in wheat spikes. J Econ Entomol 81:731–734
Article
Google Scholar
Harvey TL, Martin TJ, Seifers DL (1990) Wheat curl mite and wheat streak mosaic in moderate trichome density wheat cultivars. Crop Sci 30:534–536
Article
Google Scholar
Hein GL, French R, Siriwetwiwat B, Amrine JW (2012) Genetic characterization of north american populations of the wheat curl mite and dry bulb mite. J Econ Entomol 105:1801–1808. https://doi.org/10.1603/EC11428
CAS
Article
PubMed
Google Scholar
Jeger MJ (1999) Improved understanding of dispersal in crop pest and disease management: current status and future directions. Agric for Meteorol 97:331–349. https://doi.org/10.1016/S0168-1923(99)00076-3
Article
Google Scholar
Jeppson LR, Keifer HH, Baker EW (1975) Mites injurious to economic plants. University of California Press, Berkeley
Book
Google Scholar
Julia JF, Mariau D (1979) Nouvelles recherche´ en Cote d’Ivoire sur Eriophyes guerreronis K., acarien ravageur des noix du cocotier. Oleagineux 34:181–189
Google Scholar
Jung C, Croft BA (2001) Aerial dispersal of phytoseiid mites (Acari: Phytoseiidae): estimating falling speed and dispersal distance of adult females. Oikos 94:182–190. https://doi.org/10.1034/j.1600-0706.2001.11044.x
Article
Google Scholar
Kellner K (2018) jagsUI: A Wrapper Around “rjags” to Streamline “JAGS” Analyses
Kiedrowicz A, Kuczyński L, Lewandowski M et al (2017) Behavioural responses to potential dispersal cues in two economically important species of cereal-feeding eriophyid mites. Sci Rep 7:3890. https://doi.org/10.1038/s41598-017-04372-7
CAS
Article
PubMed
PubMed Central
Google Scholar
Kot M, Lewis MA (1996) Dispersal data and the spread of invading organisms. Ecology 77:2027–2042
Article
Google Scholar
Kuczyński L, Rector BG, Kiedrowicz A et al (2016) Thermal niches of two invasive genotypes of the wheat curl mite Aceria tosichella: congruence between physiological and geographical distribution data. PLoS ONE 11:e0154600. https://doi.org/10.1371/journal.pone.0154600
CAS
Article
PubMed
PubMed Central
Google Scholar
Kuczyński L, Radwańska A, Karpicka-Ignatowska K et al (2020) A comprehensive and cost-effective approach for investigating passive dispersal in minute invertebrates with case studies of phytophagous eriophyid mites. Exp Appl Acarol 82:17–31. https://doi.org/10.1007/s10493-020-00532-z
Article
PubMed
PubMed Central
Google Scholar
Laska A, Majer A, Szydło W et al (2018) Cryptic diversity within grass-associated Abacarus species complex (Acariformes: Eriophyidae), with the description of a new species, Abacarus plumiger n. sp. Exp Appl Acarol 76:1–28. https://doi.org/10.1007/s10493-018-0291-6
Article
PubMed
Google Scholar
Laska A, Rector BG, Skoracka A, Kuczyński L (2019) Can your behaviour blow you away? Contextual and phenotypic precursors to passive aerial dispersal in phytophagous mites. Anim Behav 155:141–151. https://doi.org/10.1016/j.anbehav.2019.07.003
Article
Google Scholar
Liebhold AM, Tobin PC (2008) Population ecology of insect invasions and their management. Annu Rev Entomol 53:387–408. https://doi.org/10.1146/annurev.ento.52.110405.091401
CAS
Article
PubMed
Google Scholar
Lindquist EE, Oldfield GN (1996) Evolution of eriophyoid mites in relation to their host plants. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites: their biology, natural enemies and control. Elsevier Science Publishers, Amsterdam, pp 277–300
Chapter
Google Scholar
Liu J, Lee EA, Sears MK, Schaafsma AW (2005) Wheat curl mite (Acari: Eriophyidae) dispersal and its relationship with kernel red streaking in maize. J Econ Entomol 98:1580–1586. https://doi.org/10.1093/jee/98.5.1580
CAS
Article
PubMed
Google Scholar
Liu S, Li J, Guo K et al (2016) Seasonal phoresy as an overwintering strategy of a phytophagous mite. Sci Rep 6:25483. https://doi.org/10.1038/srep25483
CAS
Article
PubMed
PubMed Central
Google Scholar
Lombaert E, Boll R, Lapchin L (2006) Dispersal strategies of phytophagous insects at a local scale: adaptive potential of aphids in an agricultural environment. BMC Evol Biol 6:75. https://doi.org/10.1186/1471-2148-6-75
Article
PubMed
PubMed Central
Google Scholar
Mahmood T, Hein GL, Jensen SG (1998) Mixed infection of wheat with high plains virus and Wheat streak mosaic virus from wheat curl mites in Nebraska. Plant Dis 82:311–315
CAS
Article
Google Scholar
Majer A, Laska A, Hein G, Kuczyński L, Skoracka A (2021a) Propagule pressure rather than population growth determines colonisation ability: a case study using two phytophagous mite species differing in their invasive potential. Ecol Entomol 46:1136–1147. https://doi.org/10.1111/een.13058
Article
Google Scholar
Majer A, Laska A, Hein G, Kuczyński L, Skoracka A (2021b) Dispersal strategies of two cereal-feeding eriophyid mite species. Zenodo. https://doi.org/10.5281/zenodo.3964151
Article
Google Scholar
Massee AM (1928) The life history of the black currant gall mite, Eriophyes ribis (Westwood). Nat Bull Entomol Res 18:277–307
Google Scholar
McMechan AJ, Hein GL (2017) Population dynamics of the wheat curl mite (Acari: Eriophyidae) during the heading stages of winter wheat. J Econ Entomol 110:355–361. https://doi.org/10.1093/jee/tox028
Article
PubMed
Google Scholar
Melo JWS, Lima DB, Sabelis MW et al (2014) Limits to ambulatory displacement of coconut mites in absence and presence of food-related cues. Exp Appl Acarol 62:449–461. https://doi.org/10.1007/s10493-013-9753-z
CAS
Article
PubMed
Google Scholar
Michalska K, Skoracka A, Navia D, Amrine JW (2010) Behavioural studies on eriophyoid mites: an overview. Exp Appl Acarol 51:31–59. https://doi.org/10.1007/s10493-009-9319-2
Article
PubMed
Google Scholar
Mirab-balou M, Minaei K, Chen X (2013) An illustrated key to the genera of Thripinae (Thysanoptera, Thripidae) from Iran. Zookeys 317:27–52. https://doi.org/10.3897/zookeys.317.5447
Article
Google Scholar
Moore D, Alexander L (1987) Aspects of migration and colonization of the coconut palm by the coconut mite, Eriophyes guerreronis (Keifer) (Acari: Eriophyoidae). Bull Ent Res 77:641–650
Article
Google Scholar
Nault LR, Styer WE (1969) The dispersal of Aceria tulipae and three other grass-infesting eriophyoid mites in Ohio. Ann Entomol Soc Am 62:1446–1455
Article
Google Scholar
Navia D, Ochoa R, Welbourn C, Ferragut F (2010) Adventive eriophyoid mites: a global review of their impact, pathways, prevention and challenges. Exp Appl Acarol 51:225–255. https://doi.org/10.1007/s10493-009-9327-2
Article
PubMed
Google Scholar
Navia D, de Mendonça RS, Skoracka A et al (2013) Wheat curl mite, Aceria tosichella, and transmitted viruses: an expanding pest complex affecting cereal crops. Exp Appl Acarol 59:95–143. https://doi.org/10.1007/s10493-012-9633-y
Article
PubMed
Google Scholar
Oldfield GN, Proeseler G (1996) Eriophyoid mites as vectors of plant pathogens. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites: their biology, natural enemies and control. Elsevier Science Publishers, Amsterdam, pp 259–273
Chapter
Google Scholar
Oliveira-Hofman C, Wegulo SN, Tatineni S, Hein GL (2015) Impact of Wheat streak mosaic virus and Triticum mosaic virus coinfection of wheat on transmission rates by wheat curl mites. Plant Dis 99:1170–1174. https://doi.org/10.1094/PDIS-08-14-0868-RE
CAS
Article
PubMed
Google Scholar
Osakabe M, Isobe H, Kasai A et al (2008) Aerodynamic advantages of upside down take-off for aerial dispersal in Tetranychus spider mites. Exp Appl Acarol 44:165–183. https://doi.org/10.1007/s10493-008-9141-2
Article
PubMed
Google Scholar
Overmyer LM (2020) Factors influencing wheat curl mite Aceria tosichella Keifer dispersal. Thesis. University of Nebraska-Lincoln, 1–110
Pady SM (1955) The occurrence of the vector of the wheat streak mosaic, Aceria tulipae, on slides exposed in the air. Plant Dis Rep 39:296–297
Google Scholar
Phillips BL, Brown GP, Travis JMJ, Shine R (2008) Reid’s paradox revisited: the evolution of dispersal kernels during range expansion. Am Nat 172:S34–S48. https://doi.org/10.1086/588255
Article
PubMed
Google Scholar
Plummer M (2003) JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. Proceedings of DSC, pp 20–22
R Foundation for Statistical Computing (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Google Scholar
Reynolds AM, Reynolds DR (2009) Aphid aerial density profiles are consistent with turbulent advection amplifying flight behaviours: abandoning the epithet “passive.” Proc R Soc B 276:137–143. https://doi.org/10.1098/rspb.2008.0880
Article
PubMed
Google Scholar
Reynolds AM, Bohan DA, Bell JR (2007) Ballooning dispersal in arthropod taxa: conditions at take-off. Biol Lett 3:237–240. https://doi.org/10.1098/rsbl.2007.0109
Article
PubMed
PubMed Central
Google Scholar
Ronce O (2007) How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu Rev Ecol Evol Syst 38:231–253. https://doi.org/10.1146/annurev.ecolsys.38.091206.095611
Article
Google Scholar
Sabelis MW, Bruin J (1996) Evolutionary ecology: life history patterns, food plant choice and dispersal. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites: their biology, natural enemies and control. Elsevier Science Publishers, Amsterdam, pp 329–365
Chapter
Google Scholar
Schliesske, J (1977) Untersuchungen zur Morphologie, Biologie und Verbreitung von Aculus fockeui Nal. et Trt. (Acari: Eryophyoidea) in Niedersachsen. Thesis, Techn Univ Hannover
Schliesske J (1990) On the gall mite fauna (Acari: Eriophyoidea) of Cocos uncifera L. in Costa Rica. Plant Res Dev 31:74–81
Google Scholar
Shewry PR, Hey SJ (2015) The contribution of wheat to human diet and health. Food Energy Secur 4:178–202. https://doi.org/10.1002/fes3.64
Article
PubMed
PubMed Central
Google Scholar
Shvanderov FA (1975) Role of phoresy in the migration of Eriophyoidea. Zool Zh 54:458–461
Google Scholar
Skoracka A, Dabert M (2010) The cereal rust mite Abacarus hystrix (Acari: Eriophyoidea) is a complex of species: evidence from mitochondrial and nuclear DNA sequences. Bull Entomol Res 100:263–272. https://doi.org/10.1017/S0007485309990216
CAS
Article
PubMed
Google Scholar
Skoracka A, Kuczyski L, Santos De Mendoņa R et al (2012) Cryptic species within the wheat curl mite Aceria tosichella (Keifer) (Acari: Eriophyoidea), revealed by mitochondrial, nuclear and morphometric data. Invertebr Syst 26:417–433. https://doi.org/10.1071/IS11037
Article
Google Scholar
Skoracka A, Kuczyński L, Rector B, Amrine JW (2014a) Wheat curl mite and dry bulb mite: untangling a taxonomic conundrum through a multidisciplinary approach. Biol J Linn Soc 111:421–436. https://doi.org/10.1111/bij.12213
Article
Google Scholar
Skoracka A, Rector B, Kuczyński L et al (2014b) Global spread of wheat curl mite by its most polyphagous and pestiferous lineages. Ann Appl Biol 165:222–235. https://doi.org/10.1111/aab.12130
Article
Google Scholar
Skoracka A, Lopes LF, Alves MJ et al (2018a) Genetics of lineage diversification and the evolution of host usage in the economically important wheat curl mite, Aceria tosichella Keifer, 1969. BMC Evol Biol 18:1–15. https://doi.org/10.1186/s12862-018-1234-x
Article
Google Scholar
Skoracka A, Rector BG, Hein GL (2018b) The interface between wheat and the wheat curl mite, Aceria tosichella, the primary vector of globally important viral diseases. Front Plant Sci 9:1098. https://doi.org/10.3389/fpls.2018.01098
Article
PubMed
PubMed Central
Google Scholar
Slykhuis JT (1953) Wheat streak mosaic in Alberta and factors related to its spread. Can J Agric Sci 33:195–197. https://doi.org/10.4141/agsci-1953-0021
Article
Google Scholar
Slykhuis JT (1955) Aceria tulipae Keifer (Acarina, Eriophyoidae) in relation to the spread of wheat streak mosaic. Phytopathology 45:116–128
Google Scholar
Staples R, Allington WB (1956) Streak mosaic of wheat in Nebraska and its control. Univ Nebr Agric Exp Stn Res Bull 178:41
Google Scholar
Staples R, Allington WB (1959) The efficiency of sticky traps in sampling epidemic populations of the eriophyoid mite Aceria tulipae (K.), vector of wheat streak mosaic virus. Ann Entomol Soc Am 52:159–164
Article
Google Scholar
Sumangala K, Haq MA (2005) Diurnal periodicity and dispersal of coconut mite, Aceria guerreronis Keifer. J Entomol Res 29:303–307
Google Scholar
Szydło W, Hein G, Denizhan E, Skoracka A (2015) Exceptionally high levels of genetic diversity in wheat curl mite (Acari: Eriophyidae) populations from Turkey. J Econ Entomol 108:2030–2039. https://doi.org/10.1093/jee/tov180
CAS
Article
PubMed
Google Scholar
Tanaka H, Shibao M (2003) A pattern of occurrence and dispersal of the tomato russet mite, Aculops lycopersici (Massee) in a tomato greenhouse. Proc Kansai Pl Prot Soc 45:23–27
Google Scholar
Thomas JA, Hein GL (2003) Influence of volunteer wheat plant condition on movement of the wheat curl mite, Aceria tosichella, in winter wheat. Exp Appl Acarol 31:253–268. https://doi.org/10.1023/B:APPA.0000010384.12678.46
Article
PubMed
Google Scholar
Travis JMJ, Mustin K, Benton TG, Dytham C (2009) Accelerating invasion rates result from the evolution of density-dependent dispersal. J Theor Biol 259:151–158. https://doi.org/10.1016/j.jtbi.2009.03.008
Article
PubMed
Google Scholar
Umina PA, Schiffer M, Parker P, Hoffmann AA (2016) Distribution and influence of grazing on wheat curl mites (Aceria tosichella Keifer) within a wheat field. J Appl Entomol 140:426–433. https://doi.org/10.1111/jen.12268
Article
Google Scholar
Vialatte A, Dedryver C-A, Simon J-C et al (2005) Limited genetic exchanges between populations of an insect pest living on uncultivated and related cultivated host plants. Proc R Soc B 272:1075–1082. https://doi.org/10.1098/rspb.2004.3033
Article
PubMed
PubMed Central
Google Scholar
Waite GK, McAlpine JD (1992) Honey bees as carriers of lychee erinose mite Eriophyes litchi (Acari: Eriophyiidae). Exp Appl Acarol 15:299–302
Article
Google Scholar
Washburn JO, Washburn L (1984) Active aerial dispersal of minute wingless arthropods: exploitation of boundary-layer velocity gradients. Science 223:1088–1089. https://doi.org/10.1126/science.223.4640.1088
CAS
Article
PubMed
Google Scholar
Wegulo SN, Hein GL, Klein RN, French RC (2008) Managing wheat streak mosaic. University of Nebraska, Lincoln (Extension EC1871)
Wosula EN, McMechan AJ, Hein GL (2015) The effect of temperature, relative humidity, and virus infection status on off-host survival of the wheat curl mite (Acari: Eriophyidae). J Econ Entomol 108:1545–1552. https://doi.org/10.1093/jee/tov185
CAS
Article
PubMed
Google Scholar
Zhao S, Amrine JW Jr (1997a) A new method for studying aerial dispersal behavior of eriophyoid mites (Acari: Eriophyoidea). Syst Appl Acarol 2:107–110
Google Scholar
Zhao S, Amrine JW Jr (1997b) Investigation of snow- borne mites (Acari) and revelance to dispersal. Int J Acarol 23:209–213
Article
Google Scholar