Skip to main content
Log in

Mitochondrial genome sequence of Unionicola foili (Acari: Unionicolidae): a unique gene order with implications for phylogenetic inference

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

The mitochondrial genome of Unionicola foili is circular, 14,738 bp in length, and contains several notable features. The sequence and annotation revealed a unique gene order, continuing a pattern of highly rearranged mitochondrial genomes in the Trombidiformes. U. foili mitochondrial tRNA sequences predict non-canonical secondary structures for these molecules, and our annotation suggests an in-frame fusion between the nad4L and nad5 genes in this genome. The unique gene order and unusual tRNA structures could serve as idiosyncratic characters and have the potential to be phylogenetically informative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  CAS  PubMed  Google Scholar 

  • Bae JS, Kim I, Sohn HD, Jin BR (2004) The mitochondrial genome of the firefly, Pyrocoelia rufa: complete DNA sequence, genome organization, and phylogenetic analysis with other insects. Mol Phylogenet Evol 32:978–985. doi:10.1016/j.ympev.2004.03.009

    Article  CAS  PubMed  Google Scholar 

  • Boore JL (2006) The use of genome-level characters for phylogenetic reconstruction. Trends Ecol Evol 21:439–446. doi:10.1016/j.tree.2006.05.009

    Article  PubMed  Google Scholar 

  • Boore JL, Collins TM, Stanton D, Daehler LL, Brown WM (1995) Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature 376:163–165. doi:10.1038/376163a0

    Article  CAS  PubMed  Google Scholar 

  • Chomyn A, Mariottini P, Cleeter MW et al (1985) Six unidentified reading frames of human mitochondrial DNA encode components of the respiratory-chain NADH dehydrogenase. Nature 314:592–597. doi:10.1038/314592a0

    Article  CAS  PubMed  Google Scholar 

  • Clary DO, Wolstenholme DR (1985) The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol 22:252–271. doi:10.1007/BF02099755

    Article  CAS  PubMed  Google Scholar 

  • Crease TJ (1999) The complete sequence of the mitochondrial genome of Daphnia pulex (Cladocera: Crustacea). Gene 233:89–99. doi:10.1016/S0378-1119(99)00151-1

    Article  CAS  PubMed  Google Scholar 

  • Domes K, Maraun M, Scheu S, Cameron SL (2008) The complete mitochondrial genome of the sexual oribatid mite Steganacarus magnus: genome rearrangements and loss of tRNAs. BMC Genomics 9:532. doi:10.1186/1471-2164-9-532

    Article  PubMed  Google Scholar 

  • Ernsting BR, Edwards DD, Vidrine MF, Myers KS, Harmon CM (2006) Phylogenetic relationships among species of the subgenus Parasitatax (Acari: Unionicolidae: Unionicola) based on DNA sequence of the mitochondrial cytochrome oxidase I gene. Int J Acarol 32:195–202

    Article  Google Scholar 

  • Fahrein K, Talarico G, Braband A, Podsiadlowski L (2007) The complete mitochondrial genome of Pseudocellus pearsei (Chelicerata: Ricinulei) and a comparison of mitochondrial gene rearrangements in Arachnida. BMC Genomics 8:386. doi:10.1186/1471-2164-8-386

    Article  PubMed  Google Scholar 

  • Hypsa V (2006) Parasite histories and novel phylogenetic tools: alternative approaches to inferring parasite evolution from molecular markers. Int J Parasitol 36:141–155. doi:10.1016/j.ijpara.2005.10.010

    Article  CAS  PubMed  Google Scholar 

  • Jameson D, Gibson AP, Hudelot C, Higgs PG (2003) OGRe: a relational database for comparative analysis of mitochondrial genomes. Nucleic Acids Res 31:202–206. doi:10.1093/nar/gkg077

    Article  CAS  PubMed  Google Scholar 

  • Jeyaprakash A, Hoy MA (2007) The mitochondrial genome of the predatory mite Metaseiulus occidentalis (Arthropoda: Chelicerata: Acari: Phytoseiidae) is unexpectedly large and contains several novel features. Gene 391:264–274. doi:10.1016/j.gene.2007.01.012

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  • Lavrov DV, Boore JL, Brown WM (2000) The complete mitochondrial DNA sequence of the horseshoe crab Limulus polyphemus. Mol Biol Evol 17:813–824

    CAS  PubMed  Google Scholar 

  • Lin S, Zhang H, Spencer DF, Norman JE, Gray MW (2002) Widespread and extensive editing of mitochondrial mRNAS in dinoflagellates. J Mol Biol 320:727–739. doi:10.1016/S0022-2836(02)00468-0

    Article  CAS  PubMed  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964. doi:10.1093/nar/25.5.955

    Article  CAS  PubMed  Google Scholar 

  • Masta SE (2000) Mitochondrial sequence evolution in spiders: intraspecific variation in tRNAs lacking the TPsiC Arm. Mol Biol Evol 17:1091–1100

    CAS  PubMed  Google Scholar 

  • Masta SE, Boore JL (2004) The complete mitochondrial genome sequence of the spider Habronattus oregonensis reveals rearranged and extremely truncated tRNAs. Mol Biol Evol 21:893–902. doi:10.1093/molbev/msh096

    Article  CAS  PubMed  Google Scholar 

  • Masta SE, Boore JL (2008) Parallel evolution of truncated transfer RNA genes in arachnid mitochondrial genomes. Mol Biol Evol 25:949–959. doi:10.1093/molbev/msn051

    Article  CAS  PubMed  Google Scholar 

  • Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940. doi:10.1006/jmbi.1999.2700

    Article  CAS  PubMed  Google Scholar 

  • Mitani H, Yuasa S, Takahashi M, Fukunaga M (2008) Mitochondrial gene order and molecular phylogenetic analyses indicate that the Leptotrombidium mite is paraphyletic. Unpublished GenBank Accession

  • Mitchell RD (1955) Anatomy, life history, and evolution of the mites parasitizing fresh-water mussels. Miscell Publ_Mus Zool. Univ Mich 89:1–28

    Google Scholar 

  • Montiel R, Lucena MA, Medeiros J, Simoes N (2006) The complete mitochondrial genome of the entomopathogenic nematode Steinernema carpocapsae: insights into nematode mitochondrial DNA evolution and phylogeny. J Mol Evol 62:211–225. doi:10.1007/s00239-005-0072-9

    Article  CAS  PubMed  Google Scholar 

  • Murrell A, Campbell NJ, Barker SC (2003) The value of idiosyncratic markers and changes to conserved tRNA sequences from the mitochondrial genome of hard ticks (Acari: Ixodida: Ixodidae) for phylogenetic inference. Syst Biol 52:296–310

    PubMed  Google Scholar 

  • Navajas M, Le Conte Y, Solignac M, Cros-Arteil S, Cornuet JM (2002) The complete sequence of the mitochondrial genome of the honeybee ectoparasite mite Varroa destructor (Acari: Mesostigmata). Mol Biol Evol 19:2313–2317

    CAS  PubMed  Google Scholar 

  • Ochsenreiter T, Cipriano M, Hajduk SL (2008) Alternative mRNA editing in trypanosomes is extensive and may contribute to mitochondrial protein diversity. PLoS ONE 3:e1566. doi:10.1371/journal.pone.0001566

    Article  PubMed  Google Scholar 

  • Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474. doi:10.1038/290470a0

    Article  CAS  PubMed  Google Scholar 

  • Qiu Y, Song D, Zhou K, Sun H (2005) The mitochondrial sequences of Heptathela hangzhouensis and Ornithoctonus huwena reveal unique gene arrangements and atypical tRNAs. J Mol Evol 60:57–71. doi:10.1007/s00239-004-0010-2

    Article  CAS  PubMed  Google Scholar 

  • Shao R, Barker SC (2007) Mitochondrial genomes of parasitic arthropods: implications for studies of population genetics and evolution. Parasitology 134:153–167. doi:10.1017/S0031182006001429

    Article  CAS  PubMed  Google Scholar 

  • Shao R, Dowton M, Murrell A, Barker SC (2003) Rates of gene rearrangement and nucleotide substitution are correlated in the mitochondrial genomes of insects. Mol Biol Evol 20:1612–1619. doi:10.1093/molbev/msg176

    Article  CAS  PubMed  Google Scholar 

  • Shao R, Aoki Y, Mitani H, Tabuchi N, Barker SC, Fukunaga M (2004) The mitochondrial genomes of soft ticks have an arrangement of genes that has remained unchanged for over 400 million years. Insect Mol Biol 13:219–224. doi:10.1111/j.0962-1075.2004.00447.x

    Article  CAS  PubMed  Google Scholar 

  • Shao R, Mitani H, Barker SC, Takahashi M, Fukunaga M (2005) Novel mitochondrial gene content and gene arrangement indicate illegitimate inter-mtDNA recombination in the chigger mite, Leptotrombidium pallidum. J Mol Evol 60:764–773. doi:10.1007/s00239-004-0226-1

    Article  CAS  PubMed  Google Scholar 

  • Shao R, Barker SC, Mitani H, Takahashi M, Fukunaga M (2006) Molecular mechanisms for the variation of mitochondrial gene content and gene arrangement among chigger mites of the genus Leptotrombidium (Acari: Acariformes). J Mol Evol 63:251–261. doi:10.1007/s00239-005-0196-y

    Article  CAS  PubMed  Google Scholar 

  • Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701

    CAS  Google Scholar 

  • Stapleton M, Carlson JW, Celniker SE (2006) RNA editing in Drosophila melanogaster: new targets and functional consequences. RNA 12:1922–1932. doi:10.1261/rna.254306

    Article  CAS  PubMed  Google Scholar 

  • Van Leeuwen T, Tirry L, Nauen R (2006) Complete maternal inheritance of bifenazate resistance in Tetranychus urticae Koch (Acari: Tetranychidae) and its implications in mode of action considerations. Insect Biochem Mol Biol 36:869–877. doi:10.1016/j.ibmb.2006.08.005

    Article  PubMed  Google Scholar 

  • Vidrine MF (1996a) North American Najadicola and Unionicola: diagnoses and distributions. Gail Vidrine Collectibles, Eunice

    Google Scholar 

  • Vidrine MF (1996b) North American Najadicola and Unionicola: systematics and coevolution. Gail Vidrine Collectibles, Eunice

    Google Scholar 

  • Wang DC, Meinhardt SW, Sackmann U, Weiss H, Ohnishi T (1991) The iron-sulfur clusters in the two related forms of mitochondrial NADH: ubiquinone oxidoreductase made by Neurospora crassa. Eur J Biochem 197:257–264. doi:10.1111/j.1432-1033.1991.tb15906.x

    Article  CAS  PubMed  Google Scholar 

  • Wolstenholme DR, Macfarlane JL, Okimoto R, Clary DO, Wahleithner JA (1987) Bizarre tRNAs inferred from DNA sequences of mitochondrial genomes of nematode worms. Proc Natl Acad Sci USA 84:1324–1328. doi:10.1073/pnas.84.5.1324

    Article  CAS  PubMed  Google Scholar 

  • Wortley AH, Scotland RW (2006) The effect of combining molecular and morphological data in published phylogenetic analyses. Syst Biol 55:677–685. doi:10.1080/10635150600899798

    Article  PubMed  Google Scholar 

  • Xu W, Jameson D, Tang B, Higgs PG (2006) The relationship between the rate of molecular evolution and the rate of genome rearrangement in animal mitochondrial genomes. J Mol Evol 63:375–392. doi:10.1007/s00239-005-0246-5

    Article  CAS  PubMed  Google Scholar 

  • Yokobori S, Päabo S (1995) Transfer RNA editing in land snail mitochondria. Proc Natl Acad Sci USA 92:10432–10435. doi:10.1073/pnas.92.22.10432

    Article  CAS  PubMed  Google Scholar 

  • Zhang DX, Szymura JM, Hewitt GM (1995) Evolution and structural conservation of the control region of insect mitochondrial DNA. J Mol Evol 40:382–391. doi:10.1007/BF00164024

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian R. Ernsting.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ernsting, B.R., Edwards, D.D., Aldred, K.J. et al. Mitochondrial genome sequence of Unionicola foili (Acari: Unionicolidae): a unique gene order with implications for phylogenetic inference. Exp Appl Acarol 49, 305–316 (2009). https://doi.org/10.1007/s10493-009-9263-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-009-9263-1

Keywords

Navigation