Skip to main content
Log in

The Mitochondrial Sequences of Heptathela hangzhouensis and Ornithoctonus huwena Reveal Unique Gene Arrangements and Atypical tRNAs

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

We have sequenced the complete mitochondrial genomes of the spiders Heptathela hangzhouensis and Ornithoctonus huwena. Both genomes encode 13 protein-coding genes, 22 tRNA genes, and 2 ribosomal RNA genes. H. hangzhouensis, a species of the suborder Mesothelae and a representative of the most basal clade of Araneae, possesses a gene order identical to that of Limulus polyphemus of Xiphosura. On the other hand, O. huwena, a representative of suborder Opisthothelae, infraorder Mygalomorphae, was found to have seven tRNA genes positioned differently from those of Limulus. The rrnLtrnL1nad1 arrangement shared by the araneomorph families Salticidae, Nesticidae, and Linyphiidae and the mygalomorph family Theraphosidae is a putative synapomorphy joining the mygalomorph with the araneomorph. Between the two species examined, base compositions also differ significantly. The lengths of most protein-coding genes in H. hangzhouensis and O. huwena mtDNA are either identical to or slightly shorter than their Limulus counterparts. Usage of initiation and termination codons in these protein-coding genes seems to follow patterns conserved among most arthropod and some other metazoan mitochondrial genomes. The sequences of the 3′ ends of rrnS and rrnL in the two species are similar to those reported for Limulus, and the entire genes are shortened by about 100–250 nucleotides with respect to Limulus. The lengths of most tRNA genes from the two species are distinctly shorter than those of Limulus and the sequences reveal unusual inferred tRNA secondary structures. Our finding provides new molecular evidence supporting that the suborder Mesothelae is basal to opisthothelids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • MA Arnedo J Coddington I Agnarsson RG Gillespie (2004) ArticleTitleFrom a comb to a tree: Phylogenetic relationships of the comb-footed spiders (Araneae, Theridiidae) inferred from nuclear and mitochondrial genes Mol Phylogenet Evol 31 IssueID1 225–245

    Google Scholar 

  • F Berthier M Renaud S Alziari R Durand (1986) ArticleTitleRNA mapping on Drosophila mitochondrial DNA: Precursors and template strands Nucleic Acids Res 14 IssueID11 4519–4533

    Google Scholar 

  • WC Black SuffixIV RL Roehrdanz (1998) ArticleTitleMitochondrial gene order is not conserved in arthropods: Prostriate and metastriate tick mitochondrial genomes Mol Biol Evol 15 IssueID12 1772–1785

    Google Scholar 

  • JE Bond MC Hedin MG Ramirez BD Opell (2001) ArticleTitleDeep molecular divergence in the absence of morphological and ecological change in the Californian coastal dune endemic trapdoor spider Aptostichus simus Mol Ecol 10 IssueID4 899–910

    Google Scholar 

  • JL Boore (1999) ArticleTitleAnimal mitochondrial genomes Nucleic Acids Res 27 IssueID8 1767–1780 Occurrence Handle10.1093/nar/27.8.1767 Occurrence Handle1:CAS:528:DyaK1MXivVersbo%3D Occurrence Handle10101183

    Article  CAS  PubMed  Google Scholar 

  • JL Boore WM Brown (1998) ArticleTitleBig trees from little genomes: Mitochondrial gene order as a phylogenetic tool Curr Opin Genet Dev 8 IssueID6 668–674

    Google Scholar 

  • JL Boore TM Collins D Stanton LL Daehler WM Brown (1995) ArticleTitleDeducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements Nature 376 IssueID6536 163–165 Occurrence Handle10.1038/376163a0 Occurrence Handle1:CAS:528:DyaK2MXmvFalsbo%3D Occurrence Handle7603565

    Article  CAS  PubMed  Google Scholar 

  • NJ Campbell SC Barker (1998) ArticleTitleAn unprecedented major rearrangement in an arthropod mitocondrial genome Mol Biol Evol 15 IssueID12 1786–1787

    Google Scholar 

  • J Castresana G Feldmaier-Fuchs S Yokobori N Satoh S Pääbo (1998) ArticleTitleThe mitochondrial genome of the hemichordate Balanoglossus carnosus and the evolution of deuterostome mitochondria Genetics 150 IssueID3 1115–1123

    Google Scholar 

  • JA Coddington HW Levi (1991) ArticleTitleSystematics and evolution of spiders (Araneae) Annu Rev Ecol Syst 22 565–592

    Google Scholar 

  • TJ Crease (1999) ArticleTitleThe complete sequence of the mitochondrial genome of Daphnia pulex (Cladocera: Crustacea) Gene 233 IssueID1–2 89–99 Occurrence Handle10.1016/S0378-1119(99)00151-1 Occurrence Handle1:CAS:528:DyaK1MXksV2rsLg%3D Occurrence Handle10375625

    Article  CAS  PubMed  Google Scholar 

  • RH Crozier YC Crozier (1993) ArticleTitleThe mitochondrial genome of the honeybee Apis mellifera: Complete sequence and genome organization Genetics 133 IssueID1 97–117 Occurrence Handle1:CAS:528:DyaK3sXisVyrtrc%3D Occurrence Handle8417993

    CAS  PubMed  Google Scholar 

  • EM Dotson CB Beard (2001) ArticleTitleSequence and organization of the mitochondrial genome of the Chagas disease vector, Triatoma dimidiata Insect Mol Biol 10 IssueID3 205–215

    Google Scholar 

  • M Dowton AD Austin (1999) ArticleTitleEvolutionary dynamics of a mitochondrial rearrangement “hot spot” in the Hymenoptera Mol Biol Evol 16 IssueID2 298–309

    Google Scholar 

  • K Fang CC Yang BW Lue SH Chen KY Lue (2000) ArticleTitlePhylogenetic corroboration of superfamily Lycosoidae spiders (Araneae) as inferred from partial mitochondrial 12S and 16S ribosomal DNA sequences Zool Stud 39 IssueID2 107–113

    Google Scholar 

  • IM Fearnley JE Walker (1986) ArticleTitleTwo overlapping genes in bovine mitochondrial DNA encode membrane components of ATP synthase EMBO J 5 IssueID8 2003–2008

    Google Scholar 

  • O Folmer M Black W Hoeh R Lutz R Vrijenhoek (1994) ArticleTitleDNA primers for ampliation of mitochondrial cytochrome coxidase subunit I from diverse metazoan invertebrates Mol Mar Biol Biotechnol 3 IssueID5 294–299 Occurrence Handle1:CAS:528:DyaK2MXjt12gtLs%3D Occurrence Handle7881515

    CAS  PubMed  Google Scholar 

  • RG Gillespie HB Croom SR Palumbi (1994) ArticleTitleMultiple origins of a spider radiation in Hawaii Proc Natl Acad Sci USA 91 IssueID6 2290–2294

    Google Scholar 

  • G Giribet GD Edgecombe WC Wheeler C Babbitt (2002) ArticleTitlePhylogeny and systematic position of Opiliones: a combined analysis of chelicerate relationships using morphological and molecular data Cladistics 18 IssueID1 5–70

    Google Scholar 

  • MC Hedin (1997a) ArticleTitleMolecular phylogenetics at the population/species interface in cave spiders of the southern Appalachians (Araneae: Nesticidae: Nesticus) Mol Biol Evol 14 IssueID3 309–324

    Google Scholar 

  • MC Hedin (1997b) ArticleTitleSpeciational history in a diverse clade of habitat-specialized spiders (Araneae: Nesticidae: Nesticus): Inferences from geographic-based sampling Evolution 51 IssueID6 1927–1943

    Google Scholar 

  • MC Hedin (2001) ArticleTitleMolecular insights into species phylogeny, biogeography, and morphological stasis in the ancient spider genus Hypochilus (Araneae: Hypochilidae) Mol Phylogenet Evol 18 IssueID2 238–251

    Google Scholar 

  • MC Hedin WP Maddison (2001) ArticleTitleA combined molecular approach to phylogeny of the jumping spider subfamily dendryphantinae (Araneae: Salticidae) Mol Phylogenet Evol 18 IssueID3 386–403

    Google Scholar 

  • G Hormiga M Arnedo RG Gillespie (2003) ArticleTitleSpeciation on a conveyor belt: sequential colonization of the Hawaiian islands by Orsonwelles spiders (Araneae, Linyphiidae) Syst Biol 52 IssueIDl 70–88

    Google Scholar 

  • UW Hwang CJ Park TS Yong W Kirn (2001) ArticleTitleOne-step PCR amplification of complete arthropod mitochondrial genomes Mol Phylogenet Evol 19 IssueID3 345–352

    Google Scholar 

  • S Kumar K Tamura IB Jakobsen M Nei (2001) ArticleTitleMEGA2: Molecular evolutionary genetics analysis software Bioinformatics 17 IssueID12 1244–1245 Occurrence Handle10.1093/bioinformatics/17.12.1244 Occurrence Handle1:CAS:528:DC%2BD38XmtVCktQ%3D%3D Occurrence Handle11751241

    Article  CAS  PubMed  Google Scholar 

  • Y Kumazawa H Ota M Nishida T Ozawa (1996) ArticleTitleGene rearrangements in snake mitochondrial genomes: highly concerted evolution of control-region-like sequences duplicated and inserted into a tRNA gene cluster Mol Biol Evol 13 IssueID9 1242–1254 Occurrence Handle1:CAS:528:DyaK28Xms1Siu7s%3D Occurrence Handle8896377

    CAS  PubMed  Google Scholar 

  • DV Lavrov JL Boore WM Brown (2000a) ArticleTitleThe complete mitochondrial DNA sequence of the horseshoe crab Limulus polyphemus Mol Biol Evol 17 IssueID5 813–824

    Google Scholar 

  • DV Lavrov WM Brown JL Boore (2000b) ArticleTitleA novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede Lithobius forficatus Proc Natl Acad Sci USA 97 IssueID25 13738–13742

    Google Scholar 

  • DV Lavrov JL Boore WM Brown (2002) ArticleTitleComplete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: Duplication and nonrandom loss Mol Biol Evol 19 IssueID2 163–169 Occurrence Handle1:CAS:528:DC%2BD38XovVCjtQ%3D%3D Occurrence Handle11801744

    CAS  PubMed  Google Scholar 

  • DH Lunt BC Hyman (1997) ArticleTitleAnimal mitochondrial DNA recombination Nature 387 IssueID6630 247 Occurrence Handle10.1038/387247a0 Occurrence Handle1:CAS:528:DyaK2sXjtlSht74%3D Occurrence Handle9153388

    Article  CAS  PubMed  Google Scholar 

  • M Lynch (1996) ArticleTitleMutation accumulation in transfer RNAs: Molecular evidence for Muller’s ratchet in mitochondrial genomes Mol Biol Evol 13 IssueID1 209–220 Occurrence Handle1:CAS:528:DyaK28XhtVylu7w%3D Occurrence Handle8583893

    CAS  PubMed  Google Scholar 

  • JR Macey A Larson NB Ananjeva TJ Papenfuss (1997) ArticleTitleReplication slippage may cause parallel evolution in the secondary structures of mitochondrial transfer RNAs Mol Biol Evol 14 IssueID1 30–39

    Google Scholar 

  • WP Maddison MC Hedin (2003) ArticleTitleJumping spider phylogeny (Araneae: Salticidae) Invertebr Syst 17 529–549

    Google Scholar 

  • SE Masta (2000) ArticleTitleMitochondrial sequence evolution in spiders: Intraspecific variation in tRNAs lacking the TψC arm Mol Biol Evol 17 IssueID7 1091–1100

    Google Scholar 

  • SE Masta JL Boore (2004) ArticleTitleThe complete mitochondrial genome sequence of the spider Habronattus oregonensis reveals rearranged and extremely truncated tRNAs Mol Biol Evol 21 IssueID5 893–902

    Google Scholar 

  • SE Mitchell AF Cockburn JA Seawright (1993) ArticleTitleThe mitochondrial genome of Anopheles quadrimaculatus species A: Complete nucleotide sequence and gene organization Genome 36 IssueID6 1058–1073 Occurrence Handle1:CAS:528:DyaK2cXmslKqtbc%3D Occurrence Handle8112570

    CAS  PubMed  Google Scholar 

  • M Monnerot M Solignac DR Wolstenholme (1990) ArticleTitleDiscrepancy in divergence of the mitochondrial and nuclear genomes of Drosophila teissieri and Drosophila yakuba J Mol Evol 30 IssueID6 500–508

    Google Scholar 

  • C Moritz TE Dowling WM Brown (1987) ArticleTitleEvolution of animal mitochondrial DNA: Relevance for population biology and systematics Annu Rev Ecol Syst 18 269–292 Occurrence Handle10.1146/annurev.es.18.110187.001413

    Article  Google Scholar 

  • M Navajas Y Le Conte M Solignac S Cros-Arteil JM Cornuet (2002) ArticleTitleThe complete sequence of the mitochondrial genome of the honeybee ectoparasite mite Varroa destructor (Acari: Mesostigmata) Mol Biol Evol 19 IssueID12 2313–2317

    Google Scholar 

  • T Ohtsuki YI Watanabe C Takemoto G Kawai T Ueda K Kita S Kojima Y Kaziro J Nyborg K Watanabe (2001) ArticleTitleAn “elongated” translation elongation factor Tu for truncated tRNAs in nematode mitochondria J Biol Chem 276 IssueID24 21571–21577

    Google Scholar 

  • T Ohtsuki A Sato Y Watanabe K Watanabe (2002) ArticleTitleA unique serine-specific elongation factor Tu found in nematode mitochondria Nat Struct Biol 9 IssueID9 669–673

    Google Scholar 

  • R Okimoto DR Wolstenholme (1990) ArticleTitleA set of tRNAs that lack either the TΨC arm or the dihydrouridine arm: Towards a minimal tRNA adaptor EMBO J 9 3405–3411

    Google Scholar 

  • R Okimoto JL Macfarlane DO Clary DR Wolstenholme (1992) ArticleTitleThe mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum Genetics 130 471–498 Occurrence Handle1:CAS:528:DyaK3sXhs1aju7g%3D Occurrence Handle1551572

    CAS  PubMed  Google Scholar 

  • D Ojala C Merkel R Gelfand G Attardi (1980) ArticleTitleThe tRNA genes punctuate the reading of genetic information in human mitochondrial DNA Cell 22 393–403 Occurrence Handle10.1016/0092-8674(80)90350-5 Occurrence Handle1:CAS:528:DyaL3MXkt1yhtg%3D%3D Occurrence Handle7448867

    Article  CAS  PubMed  Google Scholar 

  • D Ojala J Montoya G Attardi (1981) ArticleTitletRNA punctuation model of RNA processing in human mitochondria Nature 290 IssueID5806 470–474 Occurrence Handle1:CAS:528:DyaL3MXksFKmtLo%3D Occurrence Handle7219536

    CAS  PubMed  Google Scholar 

  • NT Perna TD Kocher (1995) ArticleTitlePatterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes J Mol Evol 41 353–358

    Google Scholar 

  • WH Piel KJ Nutt (2000) ArticleTitleOne species or several? Discordant patterns of geographic variation between allozymes and mtDNA sequences among spiders in the genus Metepeira (Araneae: Araneidae) Mol Phylogenet Evol 15 IssueID3 414–418

    Google Scholar 

  • Platnick NI (2004) The world spider catalog, version 3.5. 2004. The world spider catalog, version 4.5. American Museum of Natural History; http://research.amnh.org/entomology/spiders/ catalog/INTR01.html

  • NI Platnick WJ Gertsch (1976) ArticleTitleThe suborders of spiders: A cladistic analysis (Arachnida, Araneae) Am Mus Novit 2607 1–15

    Google Scholar 

  • C Simon F Frati A Beckenbach B Crespi H Liu P Flook (1994) ArticleTitleEvolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers Ann Entomol Soc Am 87 651–701 Occurrence Handle1:CAS:528:DyaK2MXis1Wiu7g%3D

    CAS  Google Scholar 

  • AE Smith KA Marcker (1968) ArticleTitleN-Formylmethionyl transfer RNA in mitochondria from yeast and rat liver J Mol Biol 38 241–243

    Google Scholar 

  • M Sumida Y Kanamori H Kaneda Y Kato M Nishioka M Hasegawa H Yonekawa (2001) ArticleTitleComplete nucleotide sequence and gene rearrangement of the mitochondrial genome of the Japanese pond frog Rana nigromaculata Genes Genet Syst 76 311–325

    Google Scholar 

  • JW Taanman (1999) ArticleTitleThe mitochondrial genome: Structure, transcription, translation and replication Biochim Biophys Acta 1410 103–123

    Google Scholar 

  • M Tanaka T Ozawa (1994) ArticleTitleStrand asymmetry in human mitochondrial DNA mutations Genomics 22 IssueID2 327–335

    Google Scholar 

  • JA Terrett S Miles RH Thomas (1996) ArticleTitleComplete DNA sequence of the mitochondrial genome of Cepaea nemoralis (Gastropoda: Pulmonata) J Mol Evol 42 IssueID2 160–168 Occurrence Handle1:CAS:528:DyaK28XitFSku7o%3D Occurrence Handle8919868

    CAS  PubMed  Google Scholar 

  • JD Thompson TJ Gibson F Plewniak F Jeanmougin DG Higgins (1997) ArticleTitleThe Clustal_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools Nucleic Acids Res 24 4876–4882 Occurrence Handle10.1093/nar/25.24.4876

    Article  Google Scholar 

  • CJ Vink AM Paterson (2003) ArticleTitleCombined molecular and morphological phylogenetic analyses of the New Zealand wolf spider genus Anoteropsis (Araneae: Lycosidae) Mol Phylogenet Evol 28 576–587

    Google Scholar 

  • CJ Vink AD Mitchell AM Paterson (2002) ArticleTitleA preliminary molecular analysis of phylogenetic relationships of Australasian wolf spider genera (Araneae, Lycosidae) J Arachnol 30 227–237

    Google Scholar 

  • YI Watanabe H Tsurui T Ueda R Furushima S Takamiya K Kita K Nishikawa K Watanabe (1994) ArticleTitlePrimary and higher order structures of nematode (Ascaris suum) mitochondrial tRNAs lacking either the T or D stem J Biol Chem 269 22902–22906

    Google Scholar 

  • DR Wolstenholme (1992) ArticleTitleAnimal mitochondrial DNA: Structure and evolution Int Rev Cytol 141 173–216 Occurrence Handle1:CAS:528:DyaK3sXkt1Wgs78%3D Occurrence Handle1452431

    CAS  PubMed  Google Scholar 

  • DR Wolstenholme JL Macfarlane R Okimoto DO Clary JA Wahleithner (1987) ArticleTitleBizarre tRNAs inferred from DNA sequences of mitochondrial genomes of nematode worms Proc Natl Acad Sci USA 84 IssueID5 1324–1328

    Google Scholar 

  • N Yamazaki R Ueshima JA Terrett et al. (1997) ArticleTitleEvolution of pulmonate gastropod mitochondrial genomes: Comparisons of gene organizations of Euhadra, Cepaea and Albinaria and implications of unusual tRNA secondary structures Genetics 145 IssueID3 749–758 Occurrence Handle1:CAS:528:DyaK2sXmsVaktL0%3D Occurrence Handle9055084

    CAS  PubMed  Google Scholar 

  • S Yokobori S Pääbo (1995a) ArticleTitletRNA editing in metazoans Nature 377 IssueID6549 490

    Google Scholar 

  • S Yokobori S Pääbo (1995b) ArticleTitleTransfer RNA editing in land snail mitochondria Proc Natl Acad Sci USA 92 IssueID22 10432–10435

    Google Scholar 

  • K Zehethofer C Sturmbauer (1998) ArticleTitlePhylogenetic relationships of Central European wolf spiders (Araneae: Lycosidae) inferred from 12S ribosomal DNA sequences Mol Phylogenet Evol 10 IssueID3 391–398

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Fengxiang Liu of Hubei University for providing the specimens of H. hangzhouensis. This work was supported by the National Natural Science Foundation of China (Key Project No. 30130040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiya Zhou.

Additional information

Reviewing Editor Dr. Rafael Zardoya

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, Y., Song, D., Zhou, K. et al. The Mitochondrial Sequences of Heptathela hangzhouensis and Ornithoctonus huwena Reveal Unique Gene Arrangements and Atypical tRNAs. J Mol Evol 60, 57–71 (2005). https://doi.org/10.1007/s00239-004-0010-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-004-0010-2

Keywords

Navigation