Skip to main content
Log in

A new fuzzy network data envelopment analysis model for measuring efficiency and effectiveness: assessing the sustainability of railways

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Sustainability assessment of organizations in terms of technical efficiency (TE) and service effectiveness (SE) for non-storage goods has always been an interesting topic for managers and scholars. This paper develops a novel non-radial network data envelopment analysis (NDEA) model to assess the performance of railways in terms of overall efficiency (OE), TE, SE, and technical effectiveness (TEF) with sustainability considerations. Then, the fuzzy version of our proposed NDEA model is introduced. Our fuzzy NDEA model is based on the slacks-based measure (SBM) model. The developed model can deal with both qualitative and quantitative criteria and has important features, including unit invariant, monotone, projection, benchmarking, and factor efficiency index. A case study shows the applicability of the proposed model. The results reveal that the highest and the lowest average sustainability scores belong to TE and TEF, respectively. After identifying the weaknesses of railways, we discuss how to improve their sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. https://www.rai.ir/page-showpagetemp/fa/0/form/pId368

References

  1. Bhatia V, Sharma S (2021) Expense based performance analysis and resource rationalization: case of Indian railways. Socio-Economic Planning Sciences 76:100975

    Article  Google Scholar 

  2. Boudaghi E, Farzipoor Saen R (2018) Developing a novel model of data envelopment analysis- discriminant analysis for predicting group membership of suppliers in sustainable supply chain. Comput Oper Res 89:348–359

    Article  MathSciNet  MATH  Google Scholar 

  3. Cavone G, Dotoli M, Epicoco N, Seatzu C (2017) A decision making procedure for robust train rescheduling based on mixed integer linear programming and data envelopment analysis. Appl Math Model 52:255–273

    Article  MathSciNet  MATH  Google Scholar 

  4. Chapin A, Schmidt S (1999) Do mergers improve efficiency? Evidence from deregulated rail freight. Journal of Transport Economics and Policy 33(2):147–162

    Google Scholar 

  5. Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of decision making units. Eur J Oper Res 2(6):429–444

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen C, Zhu J, Yu JY, Noori H (2012) A new methodology for evaluating sustainable product design performance with two-stage network data envelopment analysis. Eur J Oper Res 221(2):348–359

    Article  Google Scholar 

  7. Chiou YC, Lan LW, Yen BT (2010) A joint measurement of efficiency and effectiveness for non-storable commodities: integrated data envelopment analysis approaches. Eur J Oper Res 201(2):477–489

    Article  MATH  Google Scholar 

  8. Cook WD, Zhu J, Yang F (2010) Network DEA: additive efficiency decomposition. Eur J Oper Res 207(2):1122–1129

    Article  MATH  Google Scholar 

  9. Cowie J (1999) The technical efficiency of public and private ownership in the rail industry: the case of Swiss private railways. Journal of Transport Economics and Policy 33(3):241–251

    Google Scholar 

  10. Dotoli M, Epicoco N, Falagario M, Sciancalepore F (2015) A cross-efficiency fuzzy data envelopment analysis technique for performance evaluation of decision making units under uncertainty. Comput Ind Eng 79:103–114

    Article  MATH  Google Scholar 

  11. Faramarzi GR, Khodakarami M, Shabani A, Farzipoor Saen R, Azad F (2015) New network data envelopment analysis approaches: an application in measuring sustainable operation of combined cycle power plants. J Clean Prod 108:232–246

    Article  Google Scholar 

  12. Färe R, Grosskopf S (1996) Intertemporal production Frontiers: with dynamic DEA. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  13. Farrell MJ (1957) The measurement of productive efficiency. Journal of the Royal Statistical Society. Series A 120(3):253–290

    Article  Google Scholar 

  14. Güner S, Coşkun E (2019) Estimating the operational and service efficiency of bus transit routes using a non-radial DEA approach. EURO Journal on Transportation and Logistics 8(3):249–268

    Article  Google Scholar 

  15. Hatami-Marbini A, Emrouznejad A, Tavana M (2011) A taxonomy and review of the fuzzy data envelopment analysis literature: two decades in the making. Eur J Oper Res 214(3):457–472

    Article  MathSciNet  MATH  Google Scholar 

  16. Heydari C, Omrani H, Taghizadeh R (2020) A fully fuzzy network DEA-range adjusted measure model for evaluating airlines efficiency: a case of Iran. J Air Transp Manag 89:101923

    Article  Google Scholar 

  17. Huang CW, Ho FN, Chiu YH (2014) Measurement of tourist hotels productive efficiency, occupancy, and catering service effectiveness using a modified two-stage DEA model in Taiwan. Omega 48:49–59

    Article  Google Scholar 

  18. Izadikhah M, Farzipoor Saen R, Ahmadi K (2017) How to assess sustainability of suppliers in volume discount context? A new data envelopment analysis approach. Transportation Research Part D: Transport and Environment 51:102–121

    Article  MATH  Google Scholar 

  19. Jafarian-Moghaddam AR, Ghoseiri K (2012) Multi-objective data envelopment analysis model in fuzzy dynamic environment with missing values. The International Journal of Advanced Manufacturing Technology 61(5):771–85

  20. Kao C (2009) Efficiency decomposition in network data envelopment analysis: a relational model. Eur J Oper Res 192(3):949–962

    Article  MathSciNet  MATH  Google Scholar 

  21. Kao C, Hwang SN (2008) Efficiency decomposition in two-stage data envelopment analysis: an application to non-life insurance companies in Taiwan. Eur J Oper Res 185(1):418–429

    Article  MATH  Google Scholar 

  22. Kao C, Hwang SN (2010) Efficiency measurement for network systems: IT impact on firm performance. Decis Support Syst 48(3):437–446

    Article  Google Scholar 

  23. Keh HT, Chu S, Xu J (2006) Efficiency, effectiveness and productivity of marketing in service. Eur J Oper Res 170(1):265–276

    Article  MATH  Google Scholar 

  24. Khalili-Damghani K, Tavana M, Santos-Arteaga FJ (2016) A comprehensive fuzzy DEA model for emerging market assessment and selection decisions. Appl Soft Comput 38:676–702

    Article  Google Scholar 

  25. Khanjarpanah H, Jabbarzadeh A, Seyedhosseini SM (2018) A novel multi-period double frontier network DEA to sustainable location optimization of hybrid wind-photovoltaic power plant with real application. Energy Convers Manag 159:175–188

    Article  Google Scholar 

  26. Khodakarami M, Shabani A, Farzipoor Saen R (2016) Concurrent estimation of efficiency, effectiveness and returns to scale. Int J Syst Sci 47(5):1202–1220

    Article  MathSciNet  MATH  Google Scholar 

  27. Kutlar A, Kabasakal A, Sarikaya M (2013) Determination of the efficiency of the world railway companies by method of DEA and comparison of their efficiency by Tobit analysis. Qual Quant 47:3575–3602

    Article  Google Scholar 

  28. Lim S, Zhu J (2013) Integrated data envelopment analysis: global vs. local optimum. Eur J Oper Res 229(1):276–278

    Article  MathSciNet  MATH  Google Scholar 

  29. Lim S, Zhu J (2019) Primal-dual correspondence and frontier projections in two-stage network DEA models. Omega 83:236–248

    Article  Google Scholar 

  30. Lin ETJ (2008) Route-based performance evaluation of Taiwanese domestic airlines using data envelopment analysis. Transportation Research Part E: Logistics and Transportation Review 44(5):894–899

    Article  Google Scholar 

  31. Lin YH, Hong CF (2020) Efficiency and effectiveness of airline companies in Taiwan and mainland China. Asia Pac Manag Rev 25(1):13–22

    Google Scholar 

  32. Mahdiloo M, Farzipoor Saen R, Lee KH (2015) Technical, environmental and eco-efficiency measurement for supplier selection: An extension and application of data envelopment analysis. International Journal of Production Economics 168:279–289

    Article  Google Scholar 

  33. Mahdiloo M, Jafarzadeh AH, Farzipoor Saen R, Tatham P, Fisher R (2016) A multiple criteria approach to two-stage data envelopment analysis. Transp Res Part D: Transp Environ 46:317–327

    Article  Google Scholar 

  34. Mahdiloo M, Toloo M, Duong TT, Farzipoor Saen R, Tatham P (2018) Integrated data envelopment analysis: linear vs. nonlinear model. Eur J Oper Res 268(1):255–267

    Article  MathSciNet  MATH  Google Scholar 

  35. Mallikarjun S, Lewis HF, Sexton TR (2014) Operational performance of U.S. public rail transit and implications for public policy. Socio Econ Plan Sci 48(1):74–88

    Article  Google Scholar 

  36. Michali M, Emrouznejad A, Dehnokhalaji A, Clegg B (2021) Noise-pollution efficiency analysis of European railways: a network DEA model. Transportation Research Part D: Transport and Environment 98:102980

    Article  Google Scholar 

  37. Olfat L, Amiri M, Soufi JB, Pishdar M (2016) A dynamic network efficiency measurement of airports performance considering sustainable development concept: a fuzzy dynamic network-DEA approach. J Air Transp Manag 57:272–290

    Article  Google Scholar 

  38. Oum TH, Yu C (1994) Economic efficiency of railways and implications for public policy: a comparative study of the OECD countries’ railways. Journal of Transport Economics and Policy 28(2):121–138

    Google Scholar 

  39. Peykani P, Mohammadi E, Emrouznejad A (2021) “An adjustable fuzzy chance-constrained network DEA approach with application to ranking investment firms”, expert systems with applications. Vol. 166:113938

    Google Scholar 

  40. Puri J, Yadav SP (2014) A fuzzy DEA model with undesirable fuzzy outputs and its application to the banking sector in India. Expert Systems with Application 41(14):6419–6432

    Article  Google Scholar 

  41. Saati S, Memariani A, Jahanshahloo GR (2002) Efficiency analysis and ranking of DMUs with fuzzy data. Fuzzy Optim Decis Making 1:255–267

    Article  MATH  Google Scholar 

  42. Sameni MK, Preston J, Sameni MK (2016) Evaluating efficiency of passenger railway stations: a DEA approach. Res Transp Bus Manag 20:33–38

    Article  Google Scholar 

  43. Sarkhosh-Sara A, Tavassoli M, Heshmati A (2020) Assessing the sustainability of high-, middle-, and low-income countries: A network DEA model in the presence of both zero data and undesirable outputs. Sustainable Production and Consumption 21:252–268

    Article  Google Scholar 

  44. Seaton A, Cherrie J, Dennekamp M, Donaldson K, Hurley JF, Tran CL (2005) The London underground: dust and hazards to health. Occupational & Environmental Medicine 62:355–362

    Article  Google Scholar 

  45. Shokri Kahi V, Yousefi S, Shabanpour H, Farzipoor Saen R (2017) How to evaluate sustainability of supply chains? A dynamic network DEA approach. Ind Manag Data Syst 117(9):1866–1889

    Article  Google Scholar 

  46. Soleimani-Damaneh M, Jahanshahloo GR, Abbasbandy S (2006) Computational and theoretical pitfalls in some current performance measurement techniques; and a new approach. Appl Math Comput 181(2):1199–1207

    MathSciNet  MATH  Google Scholar 

  47. Soltanzadeh E, Omrani H (2018) Dynamic network data envelopment analysis model with fuzzy inputs and outputs: an application for Iranian airlines. Appl Soft Comput 63:268–288

    Article  Google Scholar 

  48. Song M, Zhang G, Zeng W, Liu J, Fang K (2016) Railway transportation and environmental efficiency in China. Transp Res Part D: Transp Environ 48:488–498

    Article  Google Scholar 

  49. Stewart TJ (2010) Goals directed benchmark for organizational efficiency. Omega 38(6):534–539

    Article  Google Scholar 

  50. Sueyoshi T (2006) DEA-discriminant analysis: methodological comparison among eight discriminant analysis approaches. Eur J Oper Res 169(1):247–272

    Article  MathSciNet  MATH  Google Scholar 

  51. Sueyoshi T, Goto M (2012) Efficiency-based rank assessment for electric power industry: a combined use of data envelopment analysis (DEA) and DEA-discriminant analysis (DA). Energy Econ 34(3):634–644

    Article  Google Scholar 

  52. Sueyoshi T, Sekitani K (2009) An occurrence of multiple projections in DEA-based measurement of technical efficiency: theoretical comparison among DEA models from desirable properties. Eur J Oper Res 196(2):764–794

    Article  MathSciNet  MATH  Google Scholar 

  53. Talluri S, Narasimhan R, Nair A (2006) Vendor performance with supply risk: a chance constrained DEA approach. Int J Prod Econ 100(2):212–222

    Article  Google Scholar 

  54. Tavana M, Shabanpour H, Yousefi S, Farzipoor Saen R (2017) A hybrid goal programming and dynamic data envelopment analysis framework for sustainable supplier evaluation. Neural Comput & Applic 28(12):3683–3696

    Article  Google Scholar 

  55. Tavassoli M, Saen RF (2019) Predicting group membership of sustainable suppliers via data envelopment analysis and discriminant analysis. Sustain Prod Consumption 18:41–52

    Article  Google Scholar 

  56. Tavassoli M, Faramarzi GR, Farzipoor Saen R (2014) Efficiency and effectiveness in airline performance using a SBM-NDEA model in the presence of shared input. J Air Transp Manag 34:146–153

    Article  Google Scholar 

  57. Tavassoli M, Faramarzi GR, Farzipoor Saen R (2015) A joint measurement of efficiency and effectiveness using network data envelopment analysis approach in the presence of shared input. OPSEARCH 52(3):490–504

    Article  MathSciNet  MATH  Google Scholar 

  58. Tavassoli M, Ketabi S, Ghandehari M (2020a) Developing a network DEA model for sustainability analysis of Iran’s electricity distribution network. Electrical Power and Energy System 122:106187

    Article  Google Scholar 

  59. Tavassoli M, Saen RF, Zanjirani DM (2020b) Assessing sustainability of suppliers: a novel stochastic-fuzzy DEA model. Sustainable Production and Consumption 21:78–91

    Article  Google Scholar 

  60. Tavassoli M, Fathi A, Saen RF (2021) Assessing the sustainable supply chains of tomato paste by fuzzy double frontier network DEA model. Annals of Operations Research:1–33

  61. Tone K, Tsutsui M (2009) Network DEA: a slacks-based measure approach. Eur J Oper Res 197(1):243–252

    Article  MATH  Google Scholar 

  62. Vaninsky A (2006) Efficiency of electric power generation in the United States: analysis and forecast based on data envelopment analysis. Energy Econ 28(3):326–338

    Article  Google Scholar 

  63. Wang M, Huang Y, Li D (2021) Assessing the performance of industrial water resource utilization systems in China based on a two-stage DEA approach with game cross efficiency. J Clean Prod 127722:127722

    Article  Google Scholar 

  64. Wanke P, Barros CP, Emrouznejad A (2016) Assessing productive efficiency of banks using integrated fuzzy-DEA and bootstrapping: a case of Mozambican banks. Eur J Oper Res 249(1):378–389

    Article  MATH  Google Scholar 

  65. Wong WP, Soh KL, Chong CL, Karia N (2015) Logistics firm’s performance: efficiency and effectiveness perspectives. Int J Product Perform Manag 64(5):686–701

    Article  Google Scholar 

  66. Yang C, Liu HM (2012) Managerial efficiency in Taiwan bank branches: a network DEA. Econ Model 29(2):450–461

    Article  Google Scholar 

  67. Yu MM (2008) Assessing the technical efficiency, service effectiveness, and technical effectiveness of the world’s railways through NDEA analysis. Transp Res A Policy Pract 42(10):1283–1294

    Article  Google Scholar 

  68. Zadeh LA (1996) Fuzzy Sets, Fuzzy Logic, Fuzzy Systems. World Scientific Press. isbn:978-981-02-2421-9

    Book  MATH  Google Scholar 

  69. Zarbakhshnia N, Jaghdani J (2018) Sustainable supplier evaluation and selection with a novel two-stage DEA model in the presence of uncontrollable inputs and undesirable outputs: a plastic case study. Int J Adv Manuf Technol 97:2933–2945

    Article  Google Scholar 

  70. Zhou H, Hu H (2017) Sustainability evaluation of railways in China using a two-stage network DEA model with undesirable outputs and shared resources. Sustainability 9(1):150–173

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to appreciate four Reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Farzipoor Saen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Big Data-Driven Large-Scale Group Decision Making Under Uncertainty

Appendix 1: The proof of the proposed FNSBM-DEA model

Appendix 1: The proof of the proposed FNSBM-DEA model

The fuzzy efficiency of the kth DMU with network structure can be calculated from the following FNSBM-DEA model:

$$ {\rho}_k=\min \frac{{\mathrm{W}}^{\mathrm{P}}\left[1-\frac{1}{\mathrm{m}+{\mathrm{s}}^{\prime }}\left(\sum \limits_{\mathrm{i}=1}^{\mathrm{m}}\frac{{\mathrm{s}}_{\mathrm{i}}^{\mathrm{p}-}}{{\tilde{\mathrm{x}}}_{\mathrm{i}\mathrm{k}}^{\mathrm{p}}}+\sum \limits_{{\mathrm{r}}^{\prime }=1}^{{\mathrm{s}}^{\prime }}\frac{{\mathrm{f}}_{{\mathrm{r}}^{\prime}}^{\mathrm{p}}}{{\tilde{\mathrm{y}}}_{{\mathrm{r}}^{\prime}\mathrm{k}}^{\mathrm{up}-\mathrm{c}}}\right)\right]+{\mathrm{W}}^{\mathrm{C}}\left[1-\frac{1}{\mathrm{s}+{\mathrm{m}}^{\prime }+{\mathrm{E}}^{\prime }}\left(\sum \limits_{\mathrm{r}=1}^{\mathrm{s}}\frac{{\mathrm{s}}_{\mathrm{r}}^{\mathrm{p}-}}{{\tilde{\mathrm{y}}}_{\mathrm{r}\mathrm{k}}^{\mathrm{DP}-\mathrm{C}}}+\sum \limits_{{\mathrm{i}}^{\prime }=1}^{{\mathrm{m}}^{\prime }}\frac{{\mathrm{s}}_{{\mathrm{i}}^{\prime}}^{\mathrm{C}-}}{{\tilde{\mathrm{x}}}_{{\mathrm{i}}^{\prime}\mathrm{k}}^{\mathrm{C}}}+\sum \limits_{{\mathrm{e}}^{\prime }=1}^{{\mathrm{E}}^{\prime }}\frac{{\mathrm{f}}_{{\mathrm{e}}^{\prime}}^{\mathrm{C}}}{{\tilde{\mathrm{z}}}_{{\mathrm{e}}^{\prime}\mathrm{k}}^{\mathrm{uc}}}\right)\right]}{{\mathrm{W}}^{\mathrm{P}}\left[1+\frac{1}{\mathrm{s}}\left(\sum \limits_{\mathrm{r}=1}^{\mathrm{s}}\frac{{\mathrm{s}}_{\mathrm{r}}^{\mathrm{p}+}}{{\tilde{\mathrm{y}}}_{\mathrm{r}\mathrm{k}}^{\mathrm{DP}-\mathrm{C}}}\right)\right]+{\mathrm{W}}^{\mathrm{C}}\left[1+\frac{1}{\mathrm{E}}\left(\sum \limits_{\mathrm{e}=1}^{\mathrm{E}}\frac{{\mathrm{s}}_{{\mathrm{e}}^{\prime}}^{\mathrm{C}}}{{\tilde{\mathrm{z}}}_{\mathrm{e}\mathrm{k}}^{\mathrm{p}\mathrm{c}}}\right)\right]} $$
(84)

S.t:

$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{P}}{\tilde{\mathrm{x}}}_{\mathrm{i}\mathrm{j}}^{\mathrm{P}}+{\mathrm{S}}_{\mathrm{i}}^{\mathrm{P}-}={\tilde{\mathrm{x}}}_{\mathrm{i}\mathrm{k}}^{\mathrm{P}}, $$
(85)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{C}}{\tilde{x}}_{i^{\prime }j}^c+{\mathrm{S}}_{{\mathrm{i}}^{\prime}}^{\mathrm{C}-}={\tilde{x}}_{i^{\prime }k}^C, $$
(86)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{P}}{\tilde{\mathrm{y}}}_{\mathrm{r}\mathrm{j}}^{\mathrm{DP}-\mathrm{C}}-{\mathrm{S}}_{\mathrm{r}}^{\mathrm{P}+}={\tilde{\mathrm{y}}}_{\mathrm{r}\mathrm{k}}^{\mathrm{DP}-\mathrm{C}}, $$
(87)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{P}}{\tilde{y}}_{r^{\prime }j}^{UP-C}+{\mathrm{f}}_{{\mathrm{r}}^{\prime}}^{\mathrm{P}}={\tilde{y}}_{r^{\prime }k}^{UP-C}, $$
(88)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{P}}{\tilde{\mathrm{y}}}_{\mathrm{r}\mathrm{j}}^{\mathrm{DP}-\mathrm{C}}+{\mathrm{S}}_{\mathrm{r}}^{\mathrm{P}-}={\tilde{\mathrm{y}}}_{\mathrm{r}\mathrm{k}}^{\mathrm{DP}-\mathrm{C}} $$
(89)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{C}}{\tilde{\mathrm{z}}}_{\mathrm{e}\mathrm{j}}^{\mathrm{DC}}+{\mathrm{S}}_{\mathrm{e}}^{\mathrm{C}+}={\tilde{\mathrm{z}}}_{\mathrm{rk}}^{\mathrm{DC}}, $$
(90)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{C}}{\tilde{z}}_{e^{\prime }j}^{UC}+{\mathrm{f}}_{{\mathrm{e}}^{\prime}}^{\mathrm{C}}={\tilde{z}}_{e^{\prime }k}^{UC} $$
(91)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{P}}{\tilde{\mathrm{y}}}_{\mathrm{rj}}^{\mathrm{DP}-\mathrm{C}}\ge \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{C}}{\tilde{\mathrm{y}}}_{\mathrm{rj}}^{\mathrm{DP}-\mathrm{C}} $$
(92)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{P}}=1 $$
(93)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{C}}=1 $$
(94)
$$ {\mathrm{W}}^{\mathrm{P}}+{\mathrm{W}}^{\mathrm{c}}=1 $$
(95)
$$ {\uplambda}_{\mathrm{j}}^{\mathrm{P}},{\uplambda}_{\mathrm{j}}^{\mathrm{C}},{\mathrm{S}}_{\mathrm{i}}^{\mathrm{P}-},,{\mathrm{S}}_{{\mathrm{i}}^{\prime}}^{\mathrm{C}-},{\mathrm{f}}_{{\mathrm{r}}^{\prime}}^{\mathrm{P}},{\mathrm{f}}_{{\mathrm{e}}^{\prime}}^{\mathrm{C}},{\mathrm{S}}_{\mathrm{e}}^{\mathrm{C}+}\ge 0,{\mathrm{S}}_{\mathrm{r}}^{\mathrm{P}+},{\mathrm{S}}_{\mathrm{r}}^{\mathrm{P}-}:\mathrm{free}\ \mathrm{in} \operatorname {sign},\mathrm{j}=1,\dots, \mathrm{n} $$

where “˜” indicates fuzziness. Note that all the fuzzy inputs and outputs are TFNs. Thus, we have:

$$ {\rho}_k=\min \left[\frac{{\mathrm{W}}^{\mathrm{P}}\left[1-\frac{1}{\mathrm{m}+{\mathrm{s}}^{\prime }}\left(\sum \limits_{\mathrm{i}=1}^{\mathrm{m}}\frac{{\mathrm{s}}_{\mathrm{i}}^{\mathrm{p}-}}{{\mathrm{x}}_{\mathrm{i}\mathrm{k}}^{\left(\mathrm{p}\right)\mathrm{L}}+{\mathrm{x}}_{\mathrm{i}\mathrm{k}}^{\left(\mathrm{p}\right)\mathrm{M}}+{\mathrm{x}}_{\mathrm{i}\mathrm{k}}^{\left(\mathrm{p}\right)\mathrm{R}}}+\sum \limits_{{\mathrm{r}}^{\prime }=1}^{{\mathrm{s}}^{\prime }}\frac{{\mathrm{f}}_{{\mathrm{r}}^{\prime}}^{\mathrm{p}}}{{\mathrm{y}}_{{\mathrm{r}}^{\prime}\mathrm{k}}^{\left(\mathrm{up}-\mathrm{c}\right)\mathrm{L}}+{\mathrm{y}}_{{\mathrm{r}}^{\prime}\mathrm{k}}^{\left(\mathrm{up}-\mathrm{c}\right)\mathrm{M}}+{\mathrm{y}}_{{\mathrm{r}}^{\prime}\mathrm{k}}^{\left(\mathrm{up}-\mathrm{c}\right)\mathrm{R}}}\right)\right]}{{\mathrm{W}}^{\mathrm{P}}\left[1+\frac{1}{\mathrm{s}}\left(\sum \limits_{\mathrm{r}=1}^{\mathrm{s}}\frac{{\mathrm{s}}_{\mathrm{r}}^{\mathrm{p}+}}{{\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{L}}+{\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+{\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{R}}}\right)\right]+{\mathrm{W}}^{\mathrm{C}}\left[1+\frac{1}{\mathrm{E}}\left(\sum \limits_{\mathrm{e}=1}^{\mathrm{E}}\frac{{\mathrm{s}}_{{\mathrm{e}}^{\prime}}^{\mathrm{C}}}{{\mathrm{z}}_{\mathrm{e}\mathrm{k}}^{\left(\mathrm{p}\mathrm{c}\right)\mathrm{L}}+{\mathrm{z}}_{\mathrm{e}\mathrm{k}}^{\left(\mathrm{p}\mathrm{c}\right)\mathrm{M}}+{\mathrm{z}}_{\mathrm{e}\mathrm{k}}^{\left(\mathrm{p}\mathrm{c}\right)\mathrm{R}}}\right)\right]}+\frac{+{\mathrm{W}}^{\mathrm{C}}\left[1-\frac{1}{\mathrm{s}+{\mathrm{m}}^{\prime }+{\mathrm{E}}^{\prime }}\left(\sum \limits_{\mathrm{r}=1}^{\mathrm{s}}\frac{{\mathrm{s}}_{\mathrm{r}}^{\mathrm{p}-}}{{\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{L}}+{\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+{\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{R}}}+\sum \limits_{{\mathrm{i}}^{\prime }=1}^{{\mathrm{m}}^{\prime }}\frac{{\mathrm{s}}_{{\mathrm{i}}^{\prime}}^{\mathrm{C}-}}{{\mathrm{x}}_{{\mathrm{i}}^{\prime}\mathrm{k}}^{\left(\mathrm{C}\right)\mathrm{L}}+{\mathrm{x}}_{{\mathrm{i}}^{\prime}\mathrm{k}}^{\left(\mathrm{C}\right)\mathrm{M}}+{\mathrm{x}}_{{\mathrm{i}}^{\prime}\mathrm{k}}^{\left(\mathrm{C}\right)\mathrm{R}}}+\sum \limits_{{\mathrm{e}}^{\prime }=1}^{{\mathrm{E}}^{\prime }}\frac{{\mathrm{f}}_{{\mathrm{e}}^{\prime}}^{\mathrm{C}}}{{\mathrm{z}}_{{\mathrm{e}}^{\prime}\mathrm{k}}^{\left(\mathrm{uc}\right)\mathrm{l}}+{\mathrm{z}}_{{\mathrm{e}}^{\prime}\mathrm{k}}^{\left(\mathrm{uc}\right)\mathrm{M}}+{\mathrm{z}}_{{\mathrm{e}}^{\prime}\mathrm{k}}^{\left(\mathrm{uc}\right)\mathrm{R}}}\right)\right]}{{\mathrm{W}}^{\mathrm{P}}\left[1+\frac{1}{\mathrm{s}}\left(\sum \limits_{\mathrm{r}=1}^{\mathrm{s}}\frac{{\mathrm{s}}_{\mathrm{r}}^{\mathrm{p}+}}{{\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{L}}+{\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+{\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{R}}}\right)\right]+{\mathrm{W}}^{\mathrm{C}}\left[1+\frac{1}{\mathrm{E}}\left(\sum \limits_{\mathrm{e}=1}^{\mathrm{E}}\frac{{\mathrm{s}}_{{\mathrm{e}}^{\prime}}^{\mathrm{C}}}{{\mathrm{z}}_{\mathrm{e}\mathrm{k}}^{\left(\mathrm{p}\mathrm{c}\right)\mathrm{L}}+{\mathrm{z}}_{\mathrm{e}\mathrm{k}}^{\left(\mathrm{p}\mathrm{c}\right)\mathrm{M}}+{\mathrm{z}}_{\mathrm{e}\mathrm{k}}^{\left(\mathrm{p}\mathrm{c}\right)\mathrm{R}}}\right)\right]}\right] $$
(96)

S.t:

$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{P}}\left({\mathrm{x}}_{\mathrm{i}\mathrm{j}}^{\mathrm{P}\mathrm{L}}+{\mathrm{x}}_{\mathrm{i}\mathrm{j}}^{\mathrm{P}\mathrm{M}}+{\mathrm{x}}_{\mathrm{i}\mathrm{j}}^{\mathrm{P}\mathrm{R}}\right)+{\mathrm{S}}_{\mathrm{i}}^{\mathrm{P}-}=\left({\mathrm{x}}_{\mathrm{i}\mathrm{k}}^{\mathrm{P}\mathrm{L}}+{\mathrm{x}}_{\mathrm{i}\mathrm{k}}^{\mathrm{P}\mathrm{M}}+{\mathrm{x}}_{\mathrm{i}\mathrm{k}}^{\mathrm{P}\mathrm{R}}\right), $$
(97)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{C}}\left({x}_{i^{\prime }j}^{cL}+{x}_{i^{\prime }j}^{cM}+{x}_{i^{\prime }j}^{cR}\right)+{\mathrm{S}}_{{\mathrm{i}}^{\prime}}^{\mathrm{C}-}=\left({x}_{i^{\prime }k}^{cL}+{x}_{i^{\prime }k}^{cM}+{x}_{i^{\prime }k}^{cR}\right), $$
(98)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{P}}\left({\mathrm{y}}_{\mathrm{r}\mathrm{j}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{L}}+{\mathrm{y}}_{\mathrm{r}\mathrm{j}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+{\mathrm{y}}_{\mathrm{r}\mathrm{j}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{R}}\right)-{\mathrm{S}}_{\mathrm{r}}^{\mathrm{P}+}=\left({\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{L}}+{\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+{\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{R}}\right), $$
(99)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{P}}\left({y}_{r^{\prime }j}^{\left( UP-C\right)L}+{y}_{r^{\prime }j}^{\left( UP-C\right)M}+{y}_{r^{\prime }j}^{\left( UP-C\right)R}\right)+{\mathrm{f}}_{{\mathrm{r}}^{\prime}}^{\mathrm{P}}=\left({y}_{r^{\prime }k}^{\left( UP-C\right)L}+{y}_{r^{\prime }k}^{\left( UP-C\right)M}+{y}_{r^{\prime }k}^{\left( UP-C\right)R}\right), $$
(100)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{P}}\left({\mathrm{y}}_{\mathrm{r}\mathrm{j}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{L}}{\mathrm{y}}_{\mathrm{r}\mathrm{j}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+{\mathrm{y}}_{\mathrm{r}\mathrm{j}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{R}}\right)+{\mathrm{S}}_{\mathrm{r}}^{\mathrm{P}-}=\left({\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{L}}+{\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+{\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{R}}\right), $$
(101)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{C}}\left({\mathrm{z}}_{\mathrm{e}\mathrm{j}}^{\left(\mathrm{DC}\right)\mathrm{L}}+{\mathrm{z}}_{\mathrm{e}\mathrm{j}}^{\left(\mathrm{DC}\right)\mathrm{M}}+{\mathrm{z}}_{\mathrm{e}\mathrm{j}}^{\left(\mathrm{DC}\right)\mathrm{R}}\right)+{\mathrm{S}}_{\mathrm{e}}^{\mathrm{C}+}=\left({\mathrm{z}}_{\mathrm{rk}}^{\left(\mathrm{DC}\right)\mathrm{L}}+{\mathrm{z}}_{\mathrm{rk}}^{\left(\mathrm{DC}\right)\mathrm{M}}+{\mathrm{z}}_{\mathrm{rk}}^{\left(\mathrm{DC}\right)\mathrm{R}}\right), $$
(102)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{C}}\left({z}_{e^{\prime }j}^{UCL}+{z}_{e^{\prime }j}^{UCM}+{z}_{e^{\prime }j}^{UCR}\right)+{\mathrm{f}}_{{\mathrm{e}}^{\prime}}^{\mathrm{C}}=\left({z}_{e^{\prime }k}^{UCL}+{z}_{e^{\prime }k}^{UCM}+{z}_{e^{\prime }k}^{UCR}\right) $$
(103)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{P}}{\mathrm{y}}_{\mathrm{rj}}^{\mathrm{DP}-\mathrm{C}}\ge \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{C}}{\mathrm{y}}_{\mathrm{rj}}^{\mathrm{DP}-\mathrm{C}} $$
(104)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{P}}=1 $$
(105)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{C}}=1 $$
(106)
$$ {\mathrm{W}}^{\mathrm{P}}+{\mathrm{W}}^{\mathrm{c}}=1 $$
(107)
$$ {\uplambda}_{\mathrm{j}}^{\mathrm{P}},{\uplambda}_{\mathrm{j}}^{\mathrm{C}},{\mathrm{S}}_{\mathrm{i}}^{\mathrm{P}-},,{\mathrm{S}}_{{\mathrm{i}}^{\prime}}^{\mathrm{C}-},{\mathrm{f}}_{{\mathrm{r}}^{\prime}}^{\mathrm{P}},{\mathrm{f}}_{{\mathrm{e}}^{\prime}}^{\mathrm{C}},{\mathrm{S}}_{\mathrm{e}}^{\mathrm{C}+}\ge 0,{\mathrm{S}}_{\mathrm{r}}^{\mathrm{P}+},{\mathrm{S}}_{\mathrm{r}}^{\mathrm{P}-}:\mathrm{free}\ \mathrm{in} \operatorname {sign},\mathrm{j}=1,\dots, \mathrm{n} $$

To transform the proposed fuzzy model into a crisp model, we apply the α-cut approach proposed by Saati et al. [41]. As discussed by Puri and Yadav [40], the α-cut method is used more than other methods as this approach can measure the performance of DMUs given α ∈ (0, 1]. Using the α-cut method, the proposed model is changed to an interval programming. By applying α-cut method, model (96–107) can be expressed as follows:

$$ {\rho}_k=\min \left[\frac{{\mathrm{W}}^{\mathrm{P}}\left[1-\frac{1}{\mathrm{m}+{\mathrm{s}}^{\prime }}\left(\sum \limits_{\mathrm{i}=1}^{\mathrm{m}}\frac{{\mathrm{s}}_{\mathrm{i}}^{\mathrm{p}-}}{\left[\left({\upalpha \mathrm{x}}_{\mathrm{i}\mathrm{k}}^{\left(\mathrm{p}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{x}}_{\mathrm{i}\mathrm{k}}^{\left(\mathrm{p}\right)\mathrm{L}}\right),\left({\upalpha \mathrm{x}}_{\mathrm{i}\mathrm{k}}^{\left(\mathrm{p}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{x}}_{\mathrm{i}\mathrm{k}}^{\left(\mathrm{p}\right)\mathrm{R}}\right)\right]}+\sum \limits_{{\mathrm{r}}^{\prime }=1}^{{\mathrm{s}}^{\prime }}\frac{{\mathrm{f}}_{{\mathrm{r}}^{\prime}}^{\mathrm{p}}}{\left[\left(\upalpha {\mathrm{y}}_{{\mathrm{r}}^{\prime}\mathrm{k}}^{\left(\mathrm{up}-\mathrm{c}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{y}}_{{\mathrm{r}}^{\prime}\mathrm{k}}^{\left(\mathrm{up}-\mathrm{c}\right)\mathrm{L}}\right),\left(\upalpha {\mathrm{y}}_{{\mathrm{r}}^{\prime}\mathrm{k}}^{\left(\mathrm{up}-\mathrm{c}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{y}}_{{\mathrm{r}}^{\prime}\mathrm{k}}^{\left(\mathrm{up}-\mathrm{c}\right)\mathrm{R}}\right)\right]}\right)\right]}{{\mathrm{W}}^{\mathrm{P}}\left[1+\frac{1}{\mathrm{s}}\left(\sum \limits_{\mathrm{r}=1}^{\mathrm{s}}\frac{{\mathrm{s}}_{\mathrm{r}}^{\mathrm{p}+}}{\left[\left(\upalpha {\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{L}}\right),\left(\upalpha {\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{R}}\right)\right]}\right)\right]+{\mathrm{W}}^{\mathrm{C}}\left[1+\frac{1}{\mathrm{E}}\left(\sum \limits_{\mathrm{e}=1}^{\mathrm{E}}\frac{{\mathrm{s}}_{{\mathrm{e}}^{\prime}}^{\mathrm{C}}}{\left({\upalpha \mathrm{z}}_{\mathrm{e}\mathrm{k}}^{\left(\mathrm{p}\mathrm{c}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{z}}_{\mathrm{e}\mathrm{k}}^{\left(\mathrm{p}\mathrm{c}\right)\mathrm{L}}\right),\left({\upalpha \mathrm{z}}_{\mathrm{e}\mathrm{k}}^{\left(\mathrm{p}\mathrm{c}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{z}}_{\mathrm{e}\mathrm{k}}^{\left(\mathrm{p}\mathrm{c}\right)\mathrm{L}}\right)}\right)\right]}+\frac{+{\mathrm{W}}^{\mathrm{C}}\left[1-\frac{1}{\mathrm{s}+{\mathrm{m}}^{\prime }+{\mathrm{E}}^{\prime }}\left(\sum \limits_{\mathrm{r}=1}^{\mathrm{s}}\frac{{\mathrm{s}}_{\mathrm{r}}^{\mathrm{p}-}}{\left[\left(\upalpha {\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right)\upalpha {\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{L}}\right),\left(\upalpha {\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right)\upalpha {\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{R}}\right)\right]}+\sum \limits_{{\mathrm{i}}^{\prime }=1}^{{\mathrm{m}}^{\prime }}\frac{{\mathrm{s}}_{{\mathrm{i}}^{\prime}}^{\mathrm{C}-}}{\left[\upalpha {\mathrm{x}}_{{\mathrm{i}}^{\prime}\mathrm{k}}^{\left(\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{x}}_{{\mathrm{i}}^{\prime}\mathrm{k}}^{\left(\mathrm{C}\right)\mathrm{L}}\Big),\left({\upalpha \mathrm{x}}_{\mathrm{i}\mathrm{k}}^{\left(\mathrm{p}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{x}}_{\mathrm{i}\mathrm{k}}^{\left(\mathrm{p}\right)\mathrm{R}}\right)\right]}+\sum \limits_{{\mathrm{e}}^{\prime }=1}^{{\mathrm{E}}^{\prime }}\frac{{\mathrm{f}}_{{\mathrm{e}}^{\prime}}^{\mathrm{C}}}{\left[\left(\upalpha {\mathrm{z}}_{{\mathrm{e}}^{\prime}\mathrm{k}}^{\left(\mathrm{uc}\right)\mathrm{M}}+\left(1-\upalpha \right)\upalpha {\mathrm{z}}_{{\mathrm{e}}^{\prime}\mathrm{k}}^{\left(\mathrm{uc}\right)\mathrm{L}}\right),\left(\upalpha {\mathrm{z}}_{{\mathrm{e}}^{\prime}\mathrm{k}}^{\left(\mathrm{uc}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{z}}_{{\mathrm{e}}^{\prime}\mathrm{k}}^{\left(\mathrm{uc}\right)\mathrm{R}}\right)\right]}\right)\right]}{{\mathrm{W}}^{\mathrm{P}}\left[1+\frac{1}{\mathrm{s}}\left(\sum \limits_{\mathrm{r}=1}^{\mathrm{s}}\frac{{\mathrm{s}}_{\mathrm{r}}^{\mathrm{p}+}}{\left[\left(\upalpha {\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{L}}\right),\upalpha {\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{R}}\Big),\right]}\right)\right]+{\mathrm{W}}^{\mathrm{C}}\left[1+\frac{1}{\mathrm{E}}\left(\sum \limits_{\mathrm{e}=1}^{\mathrm{E}}\frac{{\mathrm{s}}_{{\mathrm{e}}^{\prime}}^{\mathrm{C}}}{\left[\left({\upalpha \mathrm{z}}_{\mathrm{e}\mathrm{k}}^{\left(\mathrm{p}\mathrm{c}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{z}}_{\mathrm{e}\mathrm{k}}^{\left(\mathrm{p}\mathrm{c}\right)\mathrm{L}}\right),\left(\left({\upalpha \mathrm{z}}_{\mathrm{e}\mathrm{k}}^{\left(\mathrm{p}\mathrm{c}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{z}}_{\mathrm{e}\mathrm{k}}^{\left(\mathrm{p}\mathrm{c}\right)\mathrm{R}}\right)\right)\right]}\right)\right]}\right] $$
(108)

S.t:

$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{P}}\left[\left({\upalpha \mathrm{x}}_{\mathrm{i}\mathrm{j}}^{\mathrm{P}\mathrm{M}}+\left(1-\upalpha \right){\mathrm{x}}_{\mathrm{i}\mathrm{j}}^{\mathrm{P}\mathrm{L}}\right),\left({\upalpha \mathrm{x}}_{\mathrm{i}\mathrm{j}}^{\mathrm{P}\mathrm{M}}+\left(1-\upalpha \right){\mathrm{x}}_{\mathrm{i}\mathrm{j}}^{\mathrm{P}\mathrm{r}}\right)\right]+{\mathrm{S}}_{\mathrm{i}}^{\mathrm{P}-}=\left[\left({\upalpha \mathrm{x}}_{\mathrm{i}\mathrm{k}}^{\mathrm{P}\mathrm{M}}+\left(1-\upalpha \right){\mathrm{x}}_{\mathrm{i}\mathrm{k}}^{\mathrm{P}\mathrm{L}}\right),\left({\upalpha \mathrm{x}}_{\mathrm{i}\mathrm{k}}^{\mathrm{P}\mathrm{M}}+\left(1-\upalpha \right){\mathrm{x}}_{\mathrm{i}\mathrm{k}}^{\mathrm{P}\mathrm{r}}\right)\right] $$
(109)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{C}}\left[\left({\alpha x}_{i^{\prime }j}^{cM}+\left(1-\alpha \right){x}_{i^{\prime }j}^{cL}\right),\Big({\alpha x}_{i^{\prime }j}^{cM}+\left(1-\alpha \right){x}_{i^{\prime }j}^{cR},\Big)\right]+{\mathrm{S}}_{{\mathrm{i}}^{\prime}}^{\mathrm{C}-}=\left[\left({\alpha x}_{i^{\prime }k}^{cM}+\left(1-\alpha \right){x}_{i^{\prime }k}^{cL}\right),\left({\alpha x}_{i^{\prime }k}^{cM}+\left(1-\alpha \right){x}_{i^{\prime }k}^{cR}\right)\right] $$
(110)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{P}}\left[\left(\upalpha {\mathrm{y}}_{\mathrm{r}\mathrm{j}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{y}}_{\mathrm{r}\mathrm{j}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{L}}\right),\left(\upalpha {\mathrm{y}}_{\mathrm{r}\mathrm{j}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{y}}_{\mathrm{r}\mathrm{j}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{R}}\right)\right]-{\mathrm{S}}_{\mathrm{r}}^{\mathrm{P}+}=\left[\left(\upalpha {\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{L}}\right),\left(\upalpha {\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{R}}\right)\right] $$
(111)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{P}}\left[\left({\alpha y}_{r^{\prime }j}^{\left( UP-C\right)M}+\left(1-\alpha \right){y}_{r^{\prime }j}^{\left( UP-C\right)L}\right),\left({\alpha y}_{r^{\prime }j}^{\left( UP-C\right)M}+\left(1-\alpha \right){y}_{r^{\prime }j}^{\left( UP-C\right)R}\right)\right]+{\mathrm{f}}_{{\mathrm{r}}^{\prime}}^{\mathrm{P}}=\left[\left({\alpha y}_{r^{\prime }k}^{\left( UP-C\right)M}+\left(1-\alpha \right){y}_{r^{\prime }k}^{\left( UP-C\right)L}\right),\left({\alpha y}_{r^{\prime }k}^{\left( UP-C\right)M}+\left(1-\alpha \right){y}_{r^{\prime }k}^{\left( UP-C\right)R}\right)\right] $$
(112)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{P}}\left[\left({\upalpha \mathrm{y}}_{\mathrm{r}\mathrm{j}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{y}}_{\mathrm{r}\mathrm{j}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{L}}\right),\left({\upalpha \mathrm{y}}_{\mathrm{r}\mathrm{j}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{y}}_{\mathrm{r}\mathrm{j}}^{\left(\mathrm{DP}-\mathrm{C}\right)}\right)\right]+{\mathrm{S}}_{\mathrm{r}}^{\mathrm{P}-}=\left[\left({\upalpha \mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{L}}\right),\left({\upalpha \mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{y}}_{\mathrm{r}\mathrm{k}}^{\left(\mathrm{DP}-\mathrm{C}\right)}\right)\right] $$
(113)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{C}}\left[\left(\upalpha {\mathrm{z}}_{\mathrm{e}\mathrm{j}}^{\left(\mathrm{DC}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{z}}_{\mathrm{e}\mathrm{j}}^{\left(\mathrm{DC}\right)\mathrm{L}}\right),\left(\upalpha {\mathrm{z}}_{\mathrm{e}\mathrm{j}}^{\left(\mathrm{DC}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{z}}_{\mathrm{e}\mathrm{j}}^{\left(\mathrm{DC}\right)\mathrm{R}}\right)\right]+{\mathrm{S}}_{\mathrm{e}}^{\mathrm{C}+}=\left[\left(\upalpha {\mathrm{z}}_{\mathrm{e}\mathrm{k}}^{\left(\mathrm{DC}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{z}}_{\mathrm{e}\mathrm{k}}^{\left(\mathrm{DC}\right)\mathrm{L}}\right),\left(\upalpha {\mathrm{z}}_{\mathrm{e}\mathrm{k}}^{\left(\mathrm{DC}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{z}}_{\mathrm{e}\mathrm{k}}^{\left(\mathrm{DC}\right)\mathrm{R}}\right)\right] $$
(114)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{C}}\left[\left(\upalpha {z}_{e^{\prime }j}^{UCM}+\left(1-\upalpha \right)\upalpha {z}_{e^{\prime }j}^{UCL},\upalpha {z}_{e^{\prime }j}^{UCM}+\left(1-\upalpha \right)\upalpha {z}_{e^{\prime }j}^{UCR}\right)\right]+{\mathrm{f}}_{{\mathrm{e}}^{\prime}}^{\mathrm{C}}=\left[\left(\upalpha {z}_{e^{\prime }k}^{UCM}+\left(1-\upalpha \right)\upalpha {z}_{e^{\prime }k}^{UCL},\upalpha {z}_{e^{\prime }k}^{UCM}+\left(1-\upalpha \right)\upalpha {z}_{e^{\prime }k}^{UCR}\right)\right] $$
(115)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{P}}\left[\left({\upalpha \mathrm{y}}_{\mathrm{rj}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{y}}_{\mathrm{rj}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{L}}\right),\left({\upalpha \mathrm{y}}_{\mathrm{rj}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{y}}_{\mathrm{rj}}^{\left(\mathrm{DP}-\mathrm{C}\right)}\right)\right]\ge \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{C}}\left[\left({\upalpha \mathrm{y}}_{\mathrm{rj}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{y}}_{\mathrm{rj}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{L}}\right),\left({\upalpha \mathrm{y}}_{\mathrm{rj}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{y}}_{\mathrm{rj}}^{\left(\mathrm{DP}-\mathrm{C}\right)}\right)\right] $$
(116)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{P}}=1 $$
(117)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{C}}=1 $$
(118)
$$ {\mathrm{W}}^{\mathrm{P}}+{\mathrm{W}}^{\mathrm{c}}=1 $$
(119)
$$ {\uplambda}_{\mathrm{j}}^{\mathrm{P}},{\uplambda}_{\mathrm{j}}^{\mathrm{C}},{\mathrm{S}}_{\mathrm{i}}^{\mathrm{P}-},{\mathrm{S}}_{\mathrm{r}}^{\mathrm{P}+},{\mathrm{S}}_{\mathrm{r}}^{\mathrm{P}-},{\mathrm{S}}_{{\mathrm{i}}^{\prime}}^{\mathrm{C}-},{\mathrm{f}}_{{\mathrm{r}}^{\prime}}^{\mathrm{P}},{\mathrm{f}}_{{\mathrm{e}}^{\prime}}^{\mathrm{C}},{\mathrm{S}}_{\mathrm{e}}^{\mathrm{C}+}\kern0.75em \ge 0,\kern0.75em \mathrm{j}=1,\dots, \mathrm{n} $$

Obviously, all the coefficients in the fuzzy model (108–119) are intervals. Thus, we have:

$$ \left\{\begin{array}{c}{\hat{x}}_{ij}^p\in \left\{\upalpha {\mathrm{x}}_{\mathrm{ij}}^{\mathrm{PM}}+\left(1-\upalpha \right){\mathrm{x}}_{\mathrm{ij}}^{\mathrm{PL}},\upalpha {\mathrm{x}}_{\mathrm{ij}}^{\mathrm{PM}}+\left(1-\upalpha \right){\mathrm{x}}_{\mathrm{ij}}^{\mathrm{PR}}\right\}\forall \mathrm{i},\mathrm{j},\\ {}{\hat{x}}_{i^{\prime }j}^C\in \left\{\upalpha {\mathrm{x}}_{i^{\prime}\mathrm{j}}^{\mathrm{CM}}+\left(1-\upalpha \right){\mathrm{x}}_{i^{\prime}\mathrm{j}}^{\mathrm{CL}},\upalpha {\mathrm{x}}_{i^{\prime}\mathrm{j}}^{\mathrm{CM}}+\left(1-\upalpha \right)\upalpha {\mathrm{x}}_{i^{\prime}\mathrm{j}}^{\mathrm{CR}}\right\}\forall \mathrm{i},\mathrm{j},\\ {}{\hat{\mathrm{y}}}_{\mathrm{rj}}^{\mathrm{DP}-\mathrm{C}}\in \left\{\upalpha {\mathrm{y}}_{\mathrm{rj}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{y}}_{\mathrm{rj}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{L}},\upalpha {\mathrm{y}}_{\mathrm{rj}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{y}}_{\mathrm{rj}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{R}}\right\}\kern1em \forall \mathrm{i},\mathrm{j},\\ {}{\hat{y}}_{r^{\prime }j}^{UP-C}\in \left\{{\alpha y}_{r^{\prime }j}^{\left( UP-C\right)M}+\left(1-\alpha \right){y}_{r^{\prime }j}^{\left( UP-C\right)L},{\alpha y}_{r^{\prime }j}^{\left( UP-C\right)M}+\left(1-\alpha \right){y}_{r^{\prime }j}^{\left( UP-C\right)R}\right\}\forall \mathrm{i},\mathrm{j},\\ {}{\hat{\mathrm{z}}}_{\mathrm{ej}}^{\mathrm{DC}}\kern0.5em \in \left\{\upalpha {\mathrm{z}}_{\mathrm{ej}}^{\left(\mathrm{DC}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{z}}_{\mathrm{ej}}^{\left(\mathrm{DC}\right)\mathrm{L}},\upalpha {\mathrm{z}}_{\mathrm{ej}}^{\left(\mathrm{DC}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{z}}_{\mathrm{ej}}^{\left(\mathrm{DC}\right)\mathrm{R}}\right\}\forall \mathrm{i},\mathrm{j},\\ {}{\hat{z}}_{e^{\prime }j}^{UC}\in \left\{\upalpha {z}_{e^{\prime }j}^{UC M}+\left(1-\upalpha \right)\upalpha {z}_{e^{\prime }j}^{UC L},\upalpha {z}_{e^{\prime }j}^{UC M}+\left(1-\upalpha \right)\upalpha {z}_{e^{\prime }j}^{UC R}\right\}\forall \mathrm{i},\mathrm{j},\end{array}\right. $$

By substituting the variables \( {\hat{x}}_{ij}^p,{\hat{x}}_{i^{\prime }j}^C,{\hat{\mathrm{y}}}_{\mathrm{rj}}^{\mathrm{DP}-\mathrm{C}},{\hat{y}}_{r^{\prime }j}^{UP-C},{\hat{\mathrm{z}}}_{\mathrm{ej}}^{\mathrm{DC}},\mathrm{and}\ {\hat{z}}_{e^{\prime }j}^{UC} \) in model (108–119), we have:

$$ {\rho}_k=\min \frac{{\mathrm{W}}^{\mathrm{P}}\left[1-\frac{1}{\mathrm{m}+{\mathrm{s}}^{\prime }}\left(\sum \limits_{\mathrm{i}=1}^{\mathrm{m}}\frac{{\mathrm{s}}_{\mathrm{i}}^{\mathrm{p}-}}{{\hat{\mathrm{x}}}_{\mathrm{i}\mathrm{k}}^{\mathrm{p}}}+\sum \limits_{{\mathrm{r}}^{\prime }=1}^{{\mathrm{s}}^{\prime }}\frac{{\mathrm{f}}_{{\mathrm{r}}^{\prime}}^{\mathrm{p}}}{{\hat{\mathrm{y}}}_{{\mathrm{r}}^{\prime}\mathrm{k}}^{\mathrm{up}-\mathrm{c}}}\right)\right]+{\mathrm{W}}^{\mathrm{C}}\left[1-\frac{1}{\mathrm{s}+{\mathrm{m}}^{\prime }+{\mathrm{E}}^{\prime }}\left(\sum \limits_{\mathrm{r}=1}^{\mathrm{s}}\frac{{\mathrm{s}}_{\mathrm{r}}^{\mathrm{p}-}}{{\hat{\mathrm{y}}}_{\mathrm{r}\mathrm{k}}^{\mathrm{DP}-\mathrm{C}}}+\sum \limits_{{\mathrm{i}}^{\prime }=1}^{{\mathrm{m}}^{\prime }}\frac{{\mathrm{s}}_{{\mathrm{i}}^{\prime}}^{\mathrm{C}-}}{{\hat{\mathrm{x}}}_{{\mathrm{i}}^{\prime}\mathrm{k}}^{\mathrm{C}}}+\sum \limits_{{\mathrm{e}}^{\prime }=1}^{{\mathrm{E}}^{\prime }}\frac{{\mathrm{f}}_{{\mathrm{e}}^{\prime}}^{\mathrm{C}}}{{\hat{\mathrm{z}}}_{{\mathrm{e}}^{\prime}\mathrm{k}}^{\mathrm{uc}}}\right)\right]}{{\mathrm{W}}^{\mathrm{P}}\left[1+\frac{1}{\mathrm{s}}\left(\sum \limits_{\mathrm{r}=1}^{\mathrm{s}}\frac{{\mathrm{s}}_{\mathrm{r}}^{\mathrm{p}+}}{{\hat{\mathrm{y}}}_{\mathrm{r}\mathrm{k}}^{\mathrm{DP}-\mathrm{C}}}\right)\right]+{\mathrm{W}}^{\mathrm{C}}\left[1+\frac{1}{\mathrm{E}}\left(\sum \limits_{\mathrm{e}=1}^{\mathrm{E}}\frac{{\mathrm{s}}_{{\mathrm{e}}^{\prime}}^{\mathrm{C}}}{{\hat{\mathrm{z}}}_{\mathrm{e}\mathrm{k}}^{\mathrm{p}\mathrm{c}}}\right)\right]} $$
(120)

S.t:

$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{P}}{\hat{\mathrm{x}}}_{\mathrm{i}\mathrm{j}}^{\mathrm{P}}+{\mathrm{S}}_{\mathrm{i}}^{\mathrm{P}-}={\hat{\mathrm{x}}}_{\mathrm{i}\mathrm{k}}^{\mathrm{P}}, $$
(121)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{C}}{\hat{x}}_{i^{\prime }j}^c+{\mathrm{S}}_{{\mathrm{i}}^{\prime}}^{\mathrm{C}-}={\hat{x}}_{i^{\prime }k}^C $$
(122)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{P}}{\hat{\mathrm{y}}}_{\mathrm{r}\mathrm{j}}^{\mathrm{DP}-\mathrm{C}}-{\mathrm{S}}_{\mathrm{r}}^{\mathrm{P}+}={\hat{\mathrm{y}}}_{\mathrm{r}\mathrm{k}}^{\mathrm{DP}-\mathrm{C}}, $$
(123)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{P}}{\hat{y}}_{r^{\prime }j}^{UP-C}+{\mathrm{f}}_{{\mathrm{r}}^{\prime}}^{\mathrm{P}}={\hat{y}}_{r^{\prime }k}^{UP-C}, $$
(124)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{P}}{\hat{\mathrm{y}}}_{\mathrm{r}\mathrm{j}}^{\mathrm{DP}-\mathrm{C}}+{\mathrm{S}}_{\mathrm{r}}^{\mathrm{P}-}={\hat{\mathrm{y}}}_{\mathrm{r}\mathrm{k}}^{\mathrm{DP}-\mathrm{C}} $$
(125)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{C}}{\hat{\mathrm{z}}}_{\mathrm{e}\mathrm{j}}^{\mathrm{DC}}+{\mathrm{S}}_{\mathrm{e}}^{\mathrm{C}+}={\hat{\mathrm{z}}}_{\mathrm{rk}}^{\mathrm{DC}}, $$
(126)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{C}}{\hat{z}}_{e^{\prime }j}^{UC}+{\mathrm{f}}_{{\mathrm{e}}^{\prime}}^{\mathrm{C}}={\hat{z}}_{e^{\prime }k}^{UC} $$
(127)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{P}}{\hat{\mathrm{y}}}_{\mathrm{rj}}^{\mathrm{DP}-\mathrm{C}}\ge \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{C}}{\hat{\mathrm{y}}}_{\mathrm{rj}}^{\mathrm{DP}-\mathrm{C}} $$
(128)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{P}}=1 $$
(129)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{C}}=1 $$
(130)
$$ {\mathrm{W}}^{\mathrm{P}}+{\mathrm{W}}^{\mathrm{c}}=1 $$
(131)
$$ \kern0.5em \upalpha {\mathrm{x}}_{\mathrm{ij}}^{\mathrm{PM}}+\left(1-\upalpha \right){\mathrm{x}}_{\mathrm{ij}}^{\mathrm{PL}}\le {\hat{x}}_{ij}^p\le \upalpha {\mathrm{x}}_{\mathrm{ij}}^{\mathrm{PM}}+\left(1-\upalpha \right){\mathrm{x}}_{\mathrm{ij}}^{\mathrm{PR}} $$
(132)
$$ \upalpha {\mathrm{x}}_{\mathrm{ik}}^{\mathrm{PM}}+\left(1-\upalpha \right){\mathrm{x}}_{\mathrm{ik}}^{\mathrm{PL}}\le {\hat{x}}_{ik}^p\le \upalpha {\mathrm{x}}_{\mathrm{ik}}^{\mathrm{PM}}+\left(1-\upalpha \right){\mathrm{x}}_{\mathrm{ik}}^{\mathrm{PR}} $$
(133)
$$ \upalpha {\mathrm{x}}_{i^{\prime}\mathrm{j}}^{\mathrm{CM}}+\left(1-\upalpha \right){\mathrm{x}}_{i^{\prime}\mathrm{j}}^{\mathrm{CL}}\le {\hat{x}}_{i^{\prime }j}^C\le \upalpha {\mathrm{x}}_{i^{\prime}\mathrm{j}}^{\mathrm{CM}}+\left(1-\upalpha \right)\upalpha {\mathrm{x}}_{i^{\prime}\mathrm{j}}^{\mathrm{CR}} $$
(134)
$$ \upalpha {\mathrm{x}}_{i^{\prime}\mathrm{k}}^{\mathrm{CM}}+\left(1-\upalpha \right){\mathrm{x}}_{i^{\prime}\mathrm{k}}^{\mathrm{CL}}\le {\hat{x}}_{i^{\prime }k}^C\le \upalpha {\mathrm{x}}_{i^{\prime}\mathrm{k}}^{\mathrm{CM}}+\left(1-\upalpha \right)\upalpha {\mathrm{x}}_{i^{\prime}\mathrm{k}}^{\mathrm{CR}} $$
(135)
$$ \upalpha {\mathrm{y}}_{\mathrm{rj}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{y}}_{\mathrm{rj}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{L}}\le {\hat{\mathrm{y}}}_{\mathrm{rj}}^{\mathrm{DP}-\mathrm{C}}\le \upalpha {\mathrm{y}}_{\mathrm{rj}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{y}}_{\mathrm{rj}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{R}} $$
(136)
$$ \upalpha {\mathrm{y}}_{\mathrm{rk}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{y}}_{\mathrm{rk}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{L}}\le {\hat{\mathrm{y}}}_{\mathrm{rk}}^{\mathrm{DP}-\mathrm{C}}\le \upalpha {\mathrm{y}}_{\mathrm{rk}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{y}}_{\mathrm{rk}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{R}} $$
(137)
$$ {\alpha y}_{r^{\prime }j}^{\left( UP-C\right)M}+\left(1-\alpha \right){y}_{r^{\prime }j}^{\left( UP-C\right)L}\le {\hat{y}}_{r^{\prime }j}^{UP-C}\le {\alpha y}_{r^{\prime }j}^{\left( UP-C\right)M}+\left(1-\alpha \right){y}_{r^{\prime }j}^{\left( UP-C\right)R} $$
(138)
$$ {\alpha y}_{r^{\prime }k}^{\left( UP-C\right)M}+\left(1-\alpha \right){y}_{r^{\prime }k}^{\left( UP-C\right)L}\le {\hat{y}}_{r^{\prime }k}^{UP-C}\le {\alpha y}_{r^{\prime }k}^{\left( UP-C\right)M}+\left(1-\alpha \right){y}_{r^{\prime }k}^{\left( UP-C\right)R} $$
(139)
$$ \upalpha {\mathrm{z}}_{\mathrm{ej}}^{\left(\mathrm{DC}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{z}}_{\mathrm{ej}}^{\left(\mathrm{DC}\right)\mathrm{L}}\le {\hat{\mathrm{z}}}_{\mathrm{ej}}^{\mathrm{DC}}\le \upalpha {\mathrm{z}}_{\mathrm{ej}}^{\left(\mathrm{DC}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{z}}_{\mathrm{ej}}^{\left(\mathrm{DC}\right)\mathrm{R}} $$
(140)
$$ \upalpha {\mathrm{z}}_{\mathrm{ek}}^{\left(\mathrm{DC}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{z}}_{\mathrm{ek}}^{\left(\mathrm{DC}\right)\mathrm{L}}\le {\hat{\mathrm{z}}}_{\mathrm{ek}}^{\mathrm{DC}}\le \upalpha {\mathrm{z}}_{\mathrm{ek}}^{\left(\mathrm{DC}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{z}}_{\mathrm{ek}}^{\left(\mathrm{DC}\right)\mathrm{R}} $$
(141)
$$ {z}_{e^{\prime }j}^{UC M}+\left(1-\upalpha \right)\upalpha {z}_{e^{\prime }j}^{UC L}\le {\hat{z}}_{e^{\prime }j}^{UC}\le \upalpha {z}_{e^{\prime }j}^{UC M}+\left(1-\upalpha \right)\upalpha {z}_{e^{\prime }j}^{UC R} $$
(142)
$$ {z}_{e^{\prime }k}^{UC M}+\left(1-\upalpha \right)\upalpha {z}_{e^{\prime }k}^{UC L}\le {\hat{z}}_{e^{\prime }k}^{UC}\le \upalpha {z}_{e^{\prime }k}^{UC M}+\left(1-\upalpha \right)\upalpha {z}_{e^{\prime }k}^{UC R} $$
(143)
$$ {\uplambda}_{\mathrm{j}}^{\mathrm{P}},{\uplambda}_{\mathrm{j}}^{\mathrm{C}},{\mathrm{S}}_{\mathrm{i}}^{\mathrm{P}-},,{\mathrm{S}}_{{\mathrm{i}}^{\prime}}^{\mathrm{C}-},{\mathrm{f}}_{{\mathrm{r}}^{\prime}}^{\mathrm{P}},{\mathrm{f}}_{{\mathrm{e}}^{\prime}}^{\mathrm{C}},{\mathrm{S}}_{\mathrm{e}}^{\mathrm{C}+}\ge 0,{\mathrm{S}}_{\mathrm{r}}^{\mathrm{P}+},{\mathrm{S}}_{\mathrm{r}}^{\mathrm{P}-}:\mathrm{free}\ \mathrm{in} \operatorname {sign},\mathrm{j}=1,\dots, \mathrm{n}\kern0.75em \ge 0,\kern0.75em \mathrm{j}=1,\dots, \mathrm{n} $$

Note that model (120–143) is a nonlinear programming problem. To convert nonlinear programming to linear programming, we use the following variable substitutions:

$$ \left\{\begin{array}{c}{\overline{x}}_{ij}^p={\lambda}_j^p{\hat{x}}_{ij}^p\forall \left(i,j\right),\\ {}{\overline{x}}_{i^{\prime }j}^C={\lambda}_j^C{\hat{x}}_{i^{\prime }j}^C\forall \left(i,j\right),\\ {}{\overline{y}}_{rj}^{DP-C}={\lambda}_j^p{\hat{y}}_{rj}^{DP-C}\forall \left(i,j\right),\\ {}{\overline{y}}_{r^{\prime }j}^{UP-C}={\lambda}_j^p{\hat{y}}_{r^{\prime }j}^{UP-C}\forall \left(i,j\right),\\ {}{\overline{z}}_{ej}^{DC}={\lambda}_j^C{\hat{z}}_{ej}^{DC}\forall \left(i,j\right)\\ {}{\overline{z}}_{e^{\prime }j}^{UC}={\hat{\lambda_j^Cz}}_{e^{\prime }j}^{UC}\forall \left(i,j\right)\end{array}\right. $$

By substituting the above variables, model (120–143) is expressed as the following linear programming problem:

$$ {\rho}_k=\min \frac{{\mathrm{W}}^{\mathrm{P}}\left[1-\frac{1}{\mathrm{m}+{\mathrm{s}}^{\prime }}\left(\sum \limits_{\mathrm{i}=1}^{\mathrm{m}}\frac{{\mathrm{s}}_{\mathrm{i}}^{\mathrm{p}-}}{{\hat{\mathrm{x}}}_{\mathrm{i}\mathrm{k}}^{\mathrm{p}}}+\sum \limits_{{\mathrm{r}}^{\prime }=1}^{{\mathrm{s}}^{\prime }}\frac{{\mathrm{f}}_{{\mathrm{r}}^{\prime}}^{\mathrm{p}}}{{\hat{\mathrm{y}}}_{{\mathrm{r}}^{\prime}\mathrm{k}}^{\mathrm{up}-\mathrm{c}}}\right)\right]+{\mathrm{W}}^{\mathrm{C}}\left[1-\frac{1}{\mathrm{s}+{\mathrm{m}}^{\prime }+{\mathrm{E}}^{\prime }}\left(\sum \limits_{\mathrm{r}=1}^{\mathrm{s}}\frac{{\mathrm{s}}_{\mathrm{r}}^{\mathrm{p}-}}{{\hat{\mathrm{y}}}_{\mathrm{r}\mathrm{k}}^{\mathrm{DP}-\mathrm{C}}}+\sum \limits_{{\mathrm{i}}^{\prime }=1}^{{\mathrm{m}}^{\prime }}\frac{{\mathrm{s}}_{{\mathrm{i}}^{\prime}}^{\mathrm{C}-}}{{\hat{\mathrm{x}}}_{{\mathrm{i}}^{\prime}\mathrm{k}}^{\mathrm{C}}}+\sum \limits_{{\mathrm{e}}^{\prime }=1}^{{\mathrm{E}}^{\prime }}\frac{{\mathrm{f}}_{{\mathrm{e}}^{\prime}}^{\mathrm{C}}}{{\hat{\mathrm{z}}}_{{\mathrm{e}}^{\prime}\mathrm{k}}^{\mathrm{uc}}}\right)\right]}{{\mathrm{W}}^{\mathrm{P}}\left[1+\frac{1}{\mathrm{s}}\left(\sum \limits_{\mathrm{r}=1}^{\mathrm{s}}\frac{{\mathrm{s}}_{\mathrm{r}}^{\mathrm{p}+}}{{\hat{\mathrm{y}}}_{\mathrm{r}\mathrm{k}}^{\mathrm{DP}-\mathrm{C}}}\right)\right]+{\mathrm{W}}^{\mathrm{C}}\left[1+\frac{1}{\mathrm{E}}\left(\sum \limits_{\mathrm{e}=1}^{\mathrm{E}}\frac{{\mathrm{s}}_{{\mathrm{e}}^{\prime}}^{\mathrm{C}}}{{\hat{\mathrm{z}}}_{\mathrm{e}\mathrm{k}}^{\mathrm{p}\mathrm{c}}}\right)\right]} $$
(144)

S.t:

$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\overline{x}}_{ij}^p+{\mathrm{S}}_{\mathrm{i}}^{\mathrm{P}-}={\hat{\mathrm{x}}}_{\mathrm{i}\mathrm{k}}^{\mathrm{P}}, $$
(145)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\overline{x}}_{i^{\prime }j}^C+{\mathrm{S}}_{{\mathrm{i}}^{\prime}}^{\mathrm{C}-}={\hat{x}}_{i^{\prime }k}^C, $$
(146)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\overline{\mathrm{y}}}_{\mathrm{r}\mathrm{j}}^{\mathrm{DP}-\mathrm{C}}-{\mathrm{S}}_{\mathrm{r}}^{\mathrm{P}+}={\hat{\mathrm{y}}}_{\mathrm{r}\mathrm{k}}^{\mathrm{DP}-\mathrm{C}}, $$
(147)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\overline{\mathrm{y}}}_{r^{\prime }j}^{UP-C}+{\mathrm{f}}_{{\mathrm{r}}^{\prime}}^{\mathrm{P}}={\hat{y}}_{r^{\prime }k}^{UP-C}, $$
(148)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\overline{\mathrm{y}}}_{\mathrm{r}\mathrm{j}}^{\mathrm{DP}-\mathrm{C}}+{\mathrm{S}}_{\mathrm{r}}^{\mathrm{P}-}={\hat{\mathrm{y}}}_{\mathrm{r}\mathrm{k}}^{\mathrm{DP}-\mathrm{C}} $$
(149)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\overline{\mathrm{z}}}_{\mathrm{e}\mathrm{j}}^{\mathrm{DC}}+{\mathrm{S}}_{\mathrm{e}}^{\mathrm{C}+}={\hat{\mathrm{z}}}_{\mathrm{rk}}^{\mathrm{DC}}, $$
(150)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\overline{z}}_{e^{\prime }j}^{UC}+{\mathrm{f}}_{{\mathrm{e}}^{\prime}}^{\mathrm{C}}={\hat{z}}_{e^{\prime }k}^{UC} $$
(151)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\overline{\mathrm{y}}}_{\mathrm{rj}}^{\mathrm{DP}-\mathrm{C}}\ge \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\overline{\mathrm{y}}}_{\mathrm{rj}}^{{\left(\mathrm{DP}-\mathrm{C}\right)}^{\prime }} $$
(152)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{P}}=1 $$
(153)
$$ \sum \limits_{\mathrm{j}=1}^{\mathrm{n}}{\uplambda}_{\mathrm{j}}^{\mathrm{C}}=1 $$
(154)
$$ {\mathrm{W}}^{\mathrm{P}}+{\mathrm{W}}^{\mathrm{c}}=1 $$
(155)
$$ {\uplambda}_{\mathrm{j}}^{\mathrm{P}}\ \left(\upalpha {\mathrm{x}}_{\mathrm{ij}}^{\mathrm{P}\mathrm{M}}+\left(1-\upalpha \right){\mathrm{x}}_{\mathrm{ij}}^{\mathrm{P}\mathrm{L}}\right)\le {\overline{x}}_{ij}^p\le {\uplambda}_{\mathrm{j}}^{\mathrm{P}}\left(\upalpha {\mathrm{x}}_{\mathrm{ij}}^{\mathrm{P}\mathrm{M}}+\left(1-\upalpha \right){\mathrm{x}}_{\mathrm{ij}}^{\mathrm{P}\mathrm{R}}\right) $$
(156)
$$ \upalpha {\mathrm{x}}_{\mathrm{ik}}^{\mathrm{PM}}+\left(1-\upalpha \right){\mathrm{x}}_{\mathrm{ik}}^{\mathrm{PL}}\le {\hat{x}}_{ik}^p\le \upalpha {\mathrm{x}}_{\mathrm{ik}}^{\mathrm{PM}}+\left(1-\upalpha \right){\mathrm{x}}_{\mathrm{ik}}^{\mathrm{PR}} $$
(157)
$$ {\uplambda}_{\mathrm{j}}^{\mathrm{C}}\left(\upalpha {\mathrm{x}}_{i^{\prime}\mathrm{j}}^{\mathrm{C}\mathrm{M}}+\left(1-\upalpha \right){\mathrm{x}}_{i^{\prime}\mathrm{j}}^{\mathrm{C}\mathrm{L}}\right)\le {\overline{x}}_{i^{\prime }j}^C\le {\uplambda}_{\mathrm{j}}^{\mathrm{C}}\left(\upalpha {\mathrm{x}}_{i^{\prime}\mathrm{j}}^{\mathrm{C}\mathrm{M}}+\left(1-\upalpha \right)\upalpha {\mathrm{x}}_{i^{\prime}\mathrm{j}}^{\mathrm{C}\mathrm{R}}\right) $$
(158)
$$ \upalpha {\mathrm{x}}_{i^{\prime}\mathrm{k}}^{\mathrm{CM}}+\left(1-\upalpha \right){\mathrm{x}}_{i^{\prime}\mathrm{k}}^{\mathrm{CL}}\le {\hat{x}}_{i^{\prime }k}^C\le \upalpha {\mathrm{x}}_{i^{\prime}\mathrm{k}}^{\mathrm{CM}}+\left(1-\upalpha \right)\upalpha {\mathrm{x}}_{i^{\prime}\mathrm{k}}^{\mathrm{CR}} $$
(159)
$$ {\uplambda}_{\mathrm{j}}^{\mathrm{P}}\left(\upalpha {\mathrm{y}}_{\mathrm{rj}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{y}}_{\mathrm{rj}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{L}}\right)\le {\overline{\mathrm{y}}}_{\mathrm{rj}}^{\mathrm{DP}-\mathrm{C}}\le {\uplambda}_{\mathrm{j}}^{\mathrm{P}}\left(\upalpha {\mathrm{y}}_{\mathrm{rj}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{y}}_{\mathrm{rj}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{R}}\right) $$
(160)
$$ {\uplambda}_{\mathrm{j}}^{\mathrm{C}}\left(\upalpha {\mathrm{y}}_{\mathrm{rj}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{y}}_{\mathrm{rj}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{L}}\right)\le {\overline{\mathrm{y}}}_{\mathrm{rj}}^{{\left(\mathrm{DP}-\mathrm{C}\right)}^{\prime }}\le {\uplambda}_{\mathrm{j}}^{\mathrm{C}}\left(\upalpha {\mathrm{y}}_{\mathrm{rj}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{y}}_{\mathrm{rj}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{R}}\right) $$
(161)
$$ \upalpha {\mathrm{y}}_{\mathrm{rk}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{y}}_{\mathrm{rk}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{L}}\le {\hat{\mathrm{y}}}_{\mathrm{rk}}^{\mathrm{DP}-\mathrm{C}}\le \upalpha {\mathrm{y}}_{\mathrm{rk}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{y}}_{\mathrm{rk}}^{\left(\mathrm{DP}-\mathrm{C}\right)\mathrm{R}} $$
(162)
$$ {\uplambda}_{\mathrm{j}}^{\mathrm{P}}\left({\alpha y}_{r^{\prime }j}^{\left( UP-C\right)M}+\left(1-\alpha \right){y}_{r^{\prime }j}^{\left( UP-C\right)L}\right)\le {\overline{\mathrm{y}}}_{r^{\prime }j}^{UP-C}\le {\uplambda}_{\mathrm{j}}^{\mathrm{P}}\left({\alpha y}_{r^{\prime }j}^{\left( UP-C\right)M}+\left(1-\alpha \right){y}_{r^{\prime }j}^{\left( UP-C\right)R}\right) $$
(163)
$$ {\alpha y}_{r^{\prime }k}^{\left( UP-C\right)M}+\left(1-\alpha \right){y}_{r^{\prime }k}^{\left( UP-C\right)L}\le {\hat{y}}_{r^{\prime }k}^{UP-C}\le {\alpha y}_{r^{\prime }k}^{\left( UP-C\right)M}+\left(1-\alpha \right){y}_{r^{\prime }k}^{\left( UP-C\right)R} $$
(164)
$$ {\uplambda}_{\mathrm{j}}^{\mathrm{C}}\left(\upalpha {\mathrm{z}}_{\mathrm{ej}}^{\left(\mathrm{DC}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{z}}_{\mathrm{ej}}^{\left(\mathrm{DC}\right)\mathrm{L}}\right)\le {\overline{\mathrm{z}}}_{\mathrm{ej}}^{\mathrm{DC}}\le {\uplambda}_{\mathrm{j}}^{\mathrm{C}}\left(\upalpha {\mathrm{z}}_{\mathrm{ej}}^{\left(\mathrm{DC}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{z}}_{\mathrm{ej}}^{\left(\mathrm{DC}\right)\mathrm{R}}\right) $$
(165)
$$ \upalpha {\mathrm{z}}_{\mathrm{ek}}^{\left(\mathrm{DC}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{z}}_{\mathrm{ek}}^{\left(\mathrm{DC}\right)\mathrm{L}}\le {\hat{\mathrm{z}}}_{\mathrm{ek}}^{\mathrm{DC}}\le \upalpha {\mathrm{z}}_{\mathrm{ek}}^{\left(\mathrm{DC}\right)\mathrm{M}}+\left(1-\upalpha \right){\mathrm{z}}_{\mathrm{ek}}^{\left(\mathrm{DC}\right)\mathrm{R}} $$
(166)
$$ {\uplambda}_{\mathrm{j}}^{\mathrm{C}}\left({z}_{e^{\prime }j}^{UC M}+\left(1-\upalpha \right)\upalpha {z}_{e^{\prime }j}^{UC L}\right)\le {\overline{z}}_{e^{\prime }j}^{UC}\le {\uplambda}_{\mathrm{j}}^{\mathrm{C}}\left(\upalpha {z}_{e^{\prime }j}^{UC M}+\left(1-\upalpha \right)\upalpha {z}_{e^{\prime }j}^{UC R}\right) $$
(167)
$$ {z}_{e^{\prime }k}^{UC M}+\left(1-\upalpha \right)\upalpha {z}_{e^{\prime }k}^{UC L}\le {\hat{z}}_{e^{\prime }k}^{UC}\le \upalpha {z}_{e^{\prime }k}^{UC M}+\left(1-\upalpha \right)\upalpha {z}_{e^{\prime }k}^{UC R} $$
(168)
$$ {\uplambda}_{\mathrm{j}}^{\mathrm{P}},{\uplambda}_{\mathrm{j}}^{\mathrm{C}},{\mathrm{S}}_{\mathrm{i}}^{\mathrm{P}-},,{\mathrm{S}}_{{\mathrm{i}}^{\prime}}^{\mathrm{C}-},{\mathrm{f}}_{{\mathrm{r}}^{\prime}}^{\mathrm{P}},{\mathrm{f}}_{{\mathrm{e}}^{\prime}}^{\mathrm{C}},{\mathrm{S}}_{\mathrm{e}}^{\mathrm{C}+}\ge 0,{\mathrm{S}}_{\mathrm{r}}^{\mathrm{P}+},{\mathrm{S}}_{\mathrm{r}}^{\mathrm{P}-}:\mathrm{free}\ \mathrm{in} \operatorname {sign},\mathrm{j}=1,\dots, \mathrm{n}. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavassoli, M., Saen, R.F. A new fuzzy network data envelopment analysis model for measuring efficiency and effectiveness: assessing the sustainability of railways. Appl Intell 52, 13634–13658 (2022). https://doi.org/10.1007/s10489-022-03336-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03336-3

Keywords

Navigation