Skip to main content
Log in

Transfer Subspace Learning based on Double Relaxed Regression for Image Classification

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

A novel method based on relaxed regression and transfer subspace learning for cross-resolution image classification is presented. Firstly, a transfer subspace learning based on the double relaxed regression (TSL_DRR) method is adopted to learn a discriminative model and simultaneously avoid over-fitting in a regression-based classification task. Secondly, the matching efficiency between low-resolution face and high-resolution face is not ideal, so a so-called transfer subspace learning (TSL) technique is introduced to the proposed method to ensure that the domain data can be better matched by projecting different resolution face images onto the common subspace. Lastly, the global data structure and local data structure can be reliably retained by applying the low-rank and sparse constraint matrices, which also reduces the noise to an extent. Extensive experiments on various real image data sets indicate that the proposed method is effective in 4.2 accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Matei BC, Meer P (2006) Estimation of nonlinear errors-in-variables models for computer vision applications. IEEE Trans Pattern Anal Mach Intell 28(10):1537–1552

    Article  Google Scholar 

  2. Tilo S (2010) Data fitting and uncertainty: a practical introduction to weighted least squares and beyond. Vieweg, Teubner, Wiesbaden

    Google Scholar 

  3. Merino A, Garcia-Alvarez D, Sainz-Palmero GI et al (2020) Knowledge based recursive non-linear partial least squares (RNPLS). ISA Trans 100:481–494

    Article  Google Scholar 

  4. Kho JB, Kim J, Kim IJ et al (2019) Cancelable fingerprint template design with randomized non-negative least squares. Pattern Recogn 91:245–260

    Article  Google Scholar 

  5. Huang D, Cabral R, De la Torre F (2016) Robust regression. IEEE Trans Pattern Anal Mach Intell 38(2):363–375

    Article  Google Scholar 

  6. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Roy Stat Soc: Ser B (Methodol) 58(1):267–288

    MathSciNet  MATH  Google Scholar 

  7. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    Article  MATH  Google Scholar 

  8. Gestel TV, Suykens JAK, Baesens B et al (2004) Benchmarking least squares support vector machine classifiers. Mach Learn 54(1):5–32

    Article  MATH  Google Scholar 

  9. Jiao L, Bo L, Wang L (2007) Fast Sparse Approximation for Least Squares Support Vector Machine. IEEE Transactions on Neural Networks 18(3):685–697

    Article  Google Scholar 

  10. Kumar N, Sukavanam N (2019) What and where you have seen? Bag of Words-based local feature pooling for visual event detection Tenth International Conference on Signal Processing Systems. Int Soc Optics Photo 11071:110710Q

    Google Scholar 

  11. Peng C, Zhang Q, Kang Z et al (2021) Kernel two-dimensional ridge regression for subspace clustering. Patt Recog 113:107749

    Article  Google Scholar 

  12. Hosmer Jr D W, Lemeshow S, Sturdivant R X 2013 Applied logistic regression. John Wiley & Sons

  13. Wen S, Zheng Y, Lu F (2021) A Sparse Representation Based Joint Demosaicing Method for Single-Chip Polarized Color Sensor. IEEE Trans Image Process 30:4171–4182

    Article  Google Scholar 

  14. Zhang L, Yang M, Feng X et al (2014) Collaborative Representation based Classification for Face Recognition. Computer ence 321:276–283

    Google Scholar 

  15. Cai S, Zhang L, Zuo W, et al 2016 A probabilistic collaborative representation based approach for pattern classification. Proceedings of the IEEE conference on computer vision and pattern recognition. 2950–2959.

  16. Paul TK, Ogunfunmi T (2013) Study of the convergence behavior of the complex kernel least mean square algorithm. IEEE trans Neural Netw Learn Syst 24(9):1349–1363

    Article  Google Scholar 

  17. Rahimi A, Recht B (2007) Random Features for Large-Scale Kernel Machines. NIPS 3(4):5

    Google Scholar 

  18. Torre DL, Fernando A (2012) Least-Squares Framework for Component Analysis. IEEE trans pattern Anal Mach Intell 34(6):1041–55

    Article  Google Scholar 

  19. Zhang XY, Wang L, Xiang S et al (2014) Retargeted least squares regression algorithm. IEEE trans Neural Netw Learn Syst 26(9):2206–2213

    Article  MathSciNet  Google Scholar 

  20. Wang C, Chen X, Yuan G, et al 2021 Semisupervised Feature Selection With Sparse Discriminative Least Squares Regression. IEEE Transactions on Cybernetics, (99):1–12.

  21. Nie F, Wang H, Huang H, et al 2013 Adaptive loss minimization for semi-supervised elastic embedding. Twenty-Third International Joint Conference on Artificial Intelligence. 1565–1571.

  22. Chang KW, Hsieh CJ, Lin CJ (2008) Coordinate descent method for large-scale l2-loss linear support vector machines. J Mach Learn Res 9(3):1369–1398

    MathSciNet  MATH  Google Scholar 

  23. Crammer K, Singer Y (2001) On the algorithmic implementation of multiclass kernel-based vector machines. J Mach Learn Res 2(Dec):265–292

    MATH  Google Scholar 

  24. An S, Liu W and Venkatesh S. Face recognition using kernel ridge regression. IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2007: 1–7.

  25. Xiang S, Nie F, Meng G et al (2012) Discriminative least squares regression for multiclass classification and feature selection. IEEE Trans Neural Netw Learn Syst 23(11):1738–1754

    Article  Google Scholar 

  26. Fang X, Xu Y, Li X et al (2017) Regularized label relaxation linear regression. IEEE Trans Neural Netw Learn Syst 29(4):1006–1018

    Article  Google Scholar 

  27. Han N, Wu J, Fang X et al (2019) Double relaxed regression for image classification. IEEE Trans Circuits Syst Video Technol 30(2):307–319

    Article  Google Scholar 

  28. Chen Z, Wu X J and Kittler J. Low-rank discriminative least squares regression for image classification. Signal Processing, 2020, 173: 107485.

  29. Liu Z, Yue L, Lai Z et al (2021) Robust sparse low-rank embedding for image dimension reduction. Applied Soft Computing 113:107907

    Article  Google Scholar 

  30. Wang L, Zhang XY, Pan C (2015) MSDLSR: Margin scalable discriminative least squares regression for multicategory classification. IEEE Trans Neural Netw Learn Syst 27(12):2711–2717

    Article  Google Scholar 

  31. Zhang L, Fu J, Wang S et al (2019) Guide subspace learning for unsupervised domain adaptation. IEEE Trans Neural Netw Learn Syst 31(9):3374–3388

    Article  MathSciNet  Google Scholar 

  32. Zheng W S, Gong S and Xiang T. Person re-identification by probabilistic relative distance comparison. CVPR 2011. IEEE, 2011: 649–656 .

  33. Li Y J, Chen Y C, Lin Y Y, et al. Recover and identify: A generative dual model for cross-resolution person re-identification. Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 8090–8099 .

  34. Ge Y, Li Z, Zhao H, et al. Fd-gan: Pose-guided feature distilling gan for robust person re-identification. arXiv preprint arXiv:1810.02936, 2018.

  35. Bai S, Tang P, Torr P H S, et al. Re-ranking via metric fusion for object retrieval and person re-identification. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 740–749.

  36. Wang X, Wang Z (2013) A novel method for image retrieval based on structure elements’ descriptor. J Vis Commun Image Represent 24(1):63–74

    Article  Google Scholar 

  37. Wang X, Wang Z (2014) The method for image retrieval based on multi-factors correlation utilizing block truncation coding. Pattern Recogn 47(10):3293–3303

    Article  Google Scholar 

  38. Unar S, Wang X, Zhang C et al (2019) Detected text-based image retrieval approach for textual images. IET Image Proc 13(3):515–521

    Article  Google Scholar 

  39. Wang X, Chen Z, Yun J (2012) An effective method for color image retrieval based on texture. Computer Standards & Interfaces 34(1):31–35

    Article  Google Scholar 

  40. Unar S, Wang X, Zhang C (2018) Visual and textual information fusion using Kernel method for content based image retrieval. Information Fusion 44:176–187

    Article  Google Scholar 

  41. Zheng W, Zong Y, Zhou X et al (2016) Cross-domain color facial expression recognition using transductive transfer subspace learning. IEEE Trans Affect Comput 9(1):21–37

    Article  Google Scholar 

  42. Shao M, Kit D, Fu Y (2014) Generalized transfer subspace learning through low-rank constraint. Int J Comput Vision 109(1–2):74–93

    Article  MathSciNet  MATH  Google Scholar 

  43. Si S, Tao D, Geng B (2009) Bregman divergence-based regularization for transfer subspace learning. IEEE Trans Knowl Data Eng 22(7):929–942

    Article  Google Scholar 

  44. Hoffman J, Rodner E, Donahue J et al (2014) Asymmetric and category invariant feature transformations for domain adaptation. Int J Comput Vision 109(1–2):28–41

    Article  MathSciNet  MATH  Google Scholar 

  45. Saenko K, Kulis B, Fritz M, et al. Adapting visual category models to new domains.European conference on computer vision. Springer, Berlin, Heidelberg, 2010: 213–226 .

  46. Agresti G, Schaefer H, Sartor P, et al. Unsupervised domain adaptation for tof data denoising with adversarial learning. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 5584–5593.

  47. Sun B and Saenko K. Deep CORAL: Correlation alignment for deep domain adaptation.European conference on computer vision. Springer, Cham, 2016: 443–450.

  48. Zhang Y, David P, Foroosh H et al (2019) A curriculum domain adaptation approach to the semantic segmentation of urban scenes. IEEE Trans Pattern Anal Mach Intell 42(8):1823–1841

    Article  Google Scholar 

  49. Zhang L, Wang S, Huang GB et al (2019) Manifold criterion guided transfer learning viaintermediate domain generation. IEEE Trans Neural Netw Learn Syst 30(12):3759–3773

    Article  MathSciNet  Google Scholar 

  50. Yao Y, Doretto G, Boosting for transfer learning with multiple sources (2010) IEEE computer society conference on computer vision and pattern recognition. IEEE 2010:1855–1862

    Google Scholar 

  51. Unar S, Wang X, Wang C et al (2019) A decisive content based image retrieval approach for feature fusion in visual and textual images. Knowl-Based Syst 179:8–20

    Article  Google Scholar 

  52. Unar S, Wang X, Wang C et al (2019) New strategy for CBIR by combining low-level visual features with a colour descriptor. IET Image Proc 13(7):1191–1200

    Article  Google Scholar 

  53. Wang XY, Chen ZF (2009) A fast fractal coding in application of image retrieval. Fractals 17(04):441–450

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhang L and Gao X 2019 Transfer adaptation learning: A decade survey. arXiv preprint arXiv:1903.04687, 2019.

  55. Xu Y, Fang X, Wu J et al (2015) Discriminative transfer subspace learning via low-rank and sparse representation. IEEE Trans Image Process 25(2):850–863

    Article  MathSciNet  MATH  Google Scholar 

  56. Lu Y, Wang W, Yuan C et al (2021) Manifold Transfer Learning Via Discriminant Regression Analysis. IEEE Trans Multimedia 23:2056–2070

    Article  Google Scholar 

  57. Zhang W, Song P, Chen D, et al 2021 Cross-corpus Speech Emotion Recognition Based on Joint Transfer Subspace Learning and Regression. IEEE Transactions on Cognitive and Developmental Systems

  58. Xiao T, Liu P, Zhao W et al (2019) Structure preservation and distribution alignment in discriminative transfer subspace learning. Neurocomputing 337:218–234

    Article  Google Scholar 

  59. Liu G, Lin Z, Yan S et al (2012) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184

    Article  Google Scholar 

  60. Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660

    Article  Google Scholar 

  61. Sim T, Baker S and Bsat M. The CMU pose, illumination, and expression (PIE) database. Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition. IEEE, 2002: 53–58.

  62. Wright J, Yang AY, Ganesh A et al (2008) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  63. Long M, Wang J, Ding G, et al 2013 Transfer feature learning with joint distribution adaptation. Proceedings of the IEEE international conference on computer vision. 2200–2207

  64. Pan SJ, Tsang IW, Kwok JT et al (2010) Domain adaptation via transfer component analysis. IEEE Trans Neural Networks 22(2):199–210

    Article  Google Scholar 

  65. Zhang Y, Jiang Z and Davis L S. Learning structured low-rank representations for imageclassification. Proceedings of the IEEE conference on computer vision and pattern recognition. 2013: 676–683.

  66. Yang L, Men M, Xue Y et al (2020) Low-rank representation-based regularized subspace learning method for unsupervised domain adaptation. Multimedia Tools and Applications 79(3):3031–3047

    Article  Google Scholar 

  67. Wang J, Chen Y, Yu H, et al. Easy transfer learning by exploiting intra-domain structures.2019 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2019: 1210–1215.

  68. Boureau Y L, Bach F, LeCun Y, et al. Learning mid-level features for recognition. IEEE computer society conference on computer vision and pattern recognition. IEEE, 2010: 2559–2566.

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant U1504610, Grant 61971339 and Grant 61471161 and 61972057, in part by the Key Project of the Natural Science Foundation of Shaanxi Province under Grant 2018JZ6002, in part by the Scientific and Technological Innovation Team of Colleges under Grant 20IRTSTHN018 and in party by the Natural Science Foundations of Henan Province under Grant 202300410148.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghua Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Liu, Z., Huo, H. et al. Transfer Subspace Learning based on Double Relaxed Regression for Image Classification. Appl Intell 52, 16294–16309 (2022). https://doi.org/10.1007/s10489-022-03213-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03213-z

Keywords

Navigation