Skip to main content
Log in

Low-rank representation-based regularized subspace learning method for unsupervised domain adaptation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The conventional classification models implicitly assume that the distributions of data employed for training and test are identical. However, the assumption is rarely valid in many practical applications. In order to alleviate the difference between the distributions of the training and test sets, in this paper, we propose a regularized subspace learning framework based on the low-rank representation technique for unsupervised domain adaptation. Specifically, we introduce a regularization term of the subspace projection matrix to deal with the ill-conditioned problem and obtain a unique numerical solution. Meanwhile, we impose a structured sparsity-inducing regularizer on the error term so that the proposed method can filter out the outlier information, and therefore improve the performance. The extensive comparison experiments on benchmark data sets demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. http://vc.sce.ntu.edu.sg/transfer_learning_domain_adaptation/

  2. http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html

References

  1. Bruzzone L, Marconcini M (2010) Domain adaptation problems: A DASVM classification technique and a circular validation strategy. IEEE Trans Pattern Anal Mach Intell 32(5):770–787

    Article  Google Scholar 

  2. Cai D, He X, Han J (2007) Spectral regression for efficient regularized subspace learning. In: Proc IEEE ICCV, pp 1–8

  3. Cai J, Candès EJ, Shen Z (2010) A singular value thresholding algorithm for matrix completion. SIAM J Optimization 20(4):1956–1982

    Article  MathSciNet  Google Scholar 

  4. Chen Y, Song S, Li S, Yang L, Wu C (2018) Domain space transfer extreme learning machine for domain adaptation. IEEE Trans Cybern 49(5):1909–1922

    Article  Google Scholar 

  5. Ding Z, Nasrabadi NM, Fu Y (2018) Semi-supervised deep domain adaptation via coupled neural networks. IEEE Trans Images Process 27(11):5214–5224

    Article  MathSciNet  Google Scholar 

  6. Donahue J, Hoffma J, Rodner E, Saenko K, Darrell T (2013) Semi-supervised domain adaptation with instance constraints. In: Proc IEEE CVPR, pp 668–675

  7. Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T (2014) DeCAF: A deep convolutional activation feature for generic visual recognition. In: Proc ACM ICML, pp 647–655

  8. Duan L, Xu D, Tsang I, Luo J (2010) Visual event recognition in videos by learning from web data. In: Proc IEEE CVPR, pp 1959–1966

  9. Duan L, Tsang IW, Xu D (2012) Domain transfer multiple kernel learning. IEEE Trans Pattern Anal Mach Intell 34:465–479

    Article  Google Scholar 

  10. Duan L, Xu D, Tsang IW (2012) Domain adaptation from multiple sources: a domain-dependent regularization approach. IEEE Trans Neural Netw Learn Syst 23 (3):504–518

    Article  Google Scholar 

  11. Fernando B, Habrard A, Sebban M, Tuylelaars T (2013) Unsupervised visual domain adaptation using subspace alignment. In: Proc ICCV, pp 2960–2967

  12. Finn C, Abbeel P, Levine S (2017) Model-agnostic meta-learning for fast adaptation of deep networks. In: Proc ACM ICML, pp 1126–1135

  13. Genc A, Ekenel HK (2019) Cross-dataset person re-identification using deep convolutional neural networks: effects of context and domain adaptation. Multimed Tools Appl 78(5):5843–5861

    Article  Google Scholar 

  14. Ghifary M, Balduzzi D, Kleijn WB, Zhang M (2017) Scatter component analysis: A unified framework for domain adaptation and domain generalization. IEEE Trans Pattern Anal Mach Intell 39(7):1414– 1430

    Article  Google Scholar 

  15. Gong B, Shi Y, Sha F, Grauman K (2012) Geodesic flow kernel for unsupervised domain adaptation. In: Proc IEEE CVPR, pp 2066–2073

  16. Gong B, Grauman K, Sha F (2013) Connecting the dots with landmarks: discriminatively learning domain-invariant features for unsupervised domain adaptation. In: Proc ACM ICML, pp 153–159

  17. Gopalan R, Li R, Chellappa R (2011) Domain adaptation for object recognition: An unsupervised approach. In: Proc IEEE ICCV, pp 999–1006

  18. Gretton A, Borgwardt KM, Rasch MJ, Schölkopf B, Smola A (2012) A kernel two-sample test. J Mach Learn Res 13:723–773

    MathSciNet  MATH  Google Scholar 

  19. Hoffman J, Tzeng E, Park T, Zhu JY, Isola P, Saenko K, Efros A, Darrell T (2018) CyCADA: Cycle-consistent adversarial domain adaptation. In: Proc ACM ICML, pp 1989–1998

  20. Hu J, Lu J, Tan Y, Zhou J (2016) Deep transfer metric learning. IEEE Trans Image Process 25(12):5576–5588

    Article  MathSciNet  Google Scholar 

  21. Huang Z, Xue W, Mao Q, Zhan Y (2017) Unsupervised domain adaptation for speech emotion recognition using PCAnet. Multimed Tools Appl 76(5):6785–6799

    Article  Google Scholar 

  22. Jhuo I-H, Liu D, Lee DT, Chang S-F (2012) Robust visual domain adaptation with low-rank reconstruction. In: Proc IEEE CVPR, pp 2168–2175

  23. Kan M, Wu J, Shan S, Chen X (2014) Domain adaptation for face recognition: Targetize source domain bridged by common subspace. Int J Comput Vis 109(1):94–109

    Article  Google Scholar 

  24. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Proc NIPS, pp 1097–1105

  25. Li J, Zhao J, Lu K (2016) Joint feature selection and structure preservation for domain adaptation. In: Proc IJCAI, pp 1697–1703

  26. Li J, Wu Y, Lu K (2017) Structured domain adaptation. IEEE Trans Circuits Syst Video Technol 27(8):1700–1713

    Article  Google Scholar 

  27. Li S, Song S, Huang G, Ding Z, Wu C (2018) Domain invariant and class discriminative feature learning for visual domain adaptation. IEEE Trans Image Process 27(9):4260–4273

    Article  MathSciNet  Google Scholar 

  28. Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184

    Article  Google Scholar 

  29. Liu L, Yang L, Zhu B (2018) Sparse feature space representation: A unified framework for semi-supervised and domain adaptation learning. Knowledge-Based Syst 156:43–61

    Article  Google Scholar 

  30. Long M, Wang J, Ding G, Sun J, Yu PS (2013) Transfer feature learning with joint distribution adaptation. In: Proc IEEE ICCV, pp 2200–2207

  31. Long M, Wang J, Ding G, Sun J, Yu PS (2014) Transfer joint matching for unsupervised domain adaptation. In: Proc IEEE CVPR, pp 1410–1417

  32. Long M, Cao Y, Wang J, Jordan M (2015) Learning transferable features with deep adaptation networks. In: Proc ACM ICML, pp 97–105

  33. Mozafari AS, Jamzad M (2016) A SVM-based model-transferring method for heterogeneous domain adaptation. Pattern Recognit 56:142–158

    Article  Google Scholar 

  34. Nuricumbo JR, Ali H, Márton Z-C, Grzegorzek M (2016) Improving object classification robustness in RGB-D using adaptive SVMs. Multimed Tools Appl 75(12):6829–6847

    Article  Google Scholar 

  35. Pan SJ, Tsang IW, Kwol JT, Yang Q (2011) Domain adaptation via transfer component analysis. IEEE Trans Neural Netw 22(2):199–210

    Article  Google Scholar 

  36. Pereira LAM, Torres RDS (2018) Semi-supervised transfer subspace for domain adaptation. Pattern Recognit 75:235–249

    Article  Google Scholar 

  37. Razzaghi P, Razzaghi P, Abbasi K (2019) Transfer subspace learning via low-rank and discriminative reconstruction matrix. Knowledge-Based Syst 163:174–185

    Article  Google Scholar 

  38. Saenko K, Kulis B, Fritz M, Darrell T (2010) Adapting visual category models to new domains. In: Proc ECCV, pp 213–226

  39. Shao M, Kit D, Fu Y (2014) Generalized transfer subspace learning through low-rank constraint. Int J Comput Vis 109(1):74–93

    Article  MathSciNet  Google Scholar 

  40. Si S, Tao D, Geng B (2010) Bregman divergence-based regularization for transfer subspace learning. IEEE Trans Knowl Data Eng 22(7):929–942

    Article  Google Scholar 

  41. Tzeng E, Hoffman J, Zhang N, Saenko K, Darrell T (2014) Deep domain confusion: Maximizing for domain invariance, Technical report. arXiv:1412.3474

  42. Tzeng E, Hoffman J, Saenko K, Darrell T (2017) Adversarial discriminative domain adaptation. In: Proc IEEE CVPR, pp 7167–7176

  43. Uzair M, Mian A (2017) Blind domain adaptation with augmented extreme learning machine features. IEEE Trans Cybern 47(3):651–660

    Article  Google Scholar 

  44. Wang X, Ren J, Liu S (2018) Distribution adaptation and manifold alignment for complex processes fault diagnosis. Knowledge-Based Syst 156:100–112

    Article  Google Scholar 

  45. Xu Y, Fang X, Wu J, Li X, Zhang D (2016) Discriminative transfer subspace learning via low-rank and sparse representation. IEEE Trans Images Process 25(2):850–863

    Article  MathSciNet  Google Scholar 

  46. Yan K, Kou L, Zhang D (2017) Learning domain-invariant subspace using domain features and independence maximization. IEEE Trans Cybern 48(1):288–299

    Article  Google Scholar 

  47. Yang J, Yin W, Zhang Y, Wang Y (2009) A fast algorithm for edge-preserving variational multichannel image restoration. SIAM J Imaging Sci 2(2):569–592

    Article  MathSciNet  Google Scholar 

  48. Zhang L, Wang P, Wei W, Lu H, Shen C, Hengel AVD, Zhang Y (2018) Unsupervised domain adaptation using robust class-wise matching. IEEE Trans Circuits Syst Video Technol 29(5):1339–1349

    Article  Google Scholar 

Download references

Acknowledgments

The work is supported by the National Natural Science Foundation of China (Grant No. 61872368). The authors also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Men, M., Xue, Y. et al. Low-rank representation-based regularized subspace learning method for unsupervised domain adaptation. Multimed Tools Appl 79, 3031–3047 (2020). https://doi.org/10.1007/s11042-019-08474-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08474-4

Keywords

Navigation