Skip to main content
Log in

Exact simulation for direction-dependent large elastic strain responses of soft fibre-reinforced composites

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

An explicit form of the elastic strain-energy function for direction-dependent large elastic strain behaviors of soft fiber-reinforced composites is first presented based upon a decoupled approach for simulating complex nonlinear coupling effects. From this form, the exact closed-form solutions are then obtained for the uniaxial tension responses in the fiber and cross-fiber directions. With such exact solutions, the issue of simultaneously simulating strongly coupling nonlinear responses in the fiber and cross-fiber directions may be reduced to the issue of separately treating each decoupled uniaxial stress-strain response, thus bypassing usual complexities and uncertainties involved in identifying a large number of strongly coupled adjustable parameters. The numerical examples given are in good agreement with the experimental data for large strain responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DIANI, J., BRIEU, M., VACHERAND, J. M., and REZGUI, A. Directional model for isotropic and anisotropic hyperelastic rubber-like materials. Mechanics of Materials, 36(4), 313–321 (2004)

    Article  Google Scholar 

  2. OLIVEIRA, B. F. and CREUS, G. J. An analytical-numerical framework for the study of ageing in fibre reinforced polymer composites. Composite Structures, 65(3–4), 443–457 (2004)

    Article  Google Scholar 

  3. MERODIO, J. and OGDEN, R. W. Material instabilities in fiber-reinforced non-linearly elastic solids under plane deformation. Archives of Mechanics, 54, 525–552 (2002)

    MathSciNet  MATH  Google Scholar 

  4. MERODIO, J. and OGDEN, R. W. Instabilities and loss of ellipticity in fiber-reinforced compressible non-linearly elastic solids under plane deformation. International Journal of Solids and Structures, 40, 4707–4727 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. MERODIO, J. and OGDEN, R. W. Mechanical response of fiber-reinforced incompressible nonlinear elastic solids. International Journal of Nonlinear Mechanics, 40(3), 213–227 (2005)

    Article  MATH  Google Scholar 

  6. MERODIO, J. and OGDEN, R. W. On tensile instabilities and ellipticity loss in fiber-reinforced incompressible non-linearly elastic solids. Mechanics Research Communications, 32, 290–299 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. ISHIKAWA, S., TOKUDA, A., and KOTERA, H. Numerical simulation for fibre-reinforced rubber. Journal of Computer Science and Technology, 2(4), 587–596 (2008)

    Article  Google Scholar 

  8. ANDRIYANA, A., BILLON, N., and SILVA, L. Mechanical response of a short fiber-reinforced thermoplastic: experimental investigation and continuum mechanical modeling. European Journal of Mechanics-A/Solids, 29(6), 1065–1077 (2010)

    Article  MATH  Google Scholar 

  9. CIARLETTA, P., IZZO, I., MICERA, S., and TENDICK, F. Stiffening by fiber reinforcement in soft materials: a hyperelastic theory at large strains and its application. Journal of the Mechanical Behavior of Biomedical Materials, 4(7), 1359–1368 (2011)

    Article  Google Scholar 

  10. LIANG, J. Z. Predictions of tensile strength of short inorganic fibre reinforced polymer composites. Polymer Testing, 30(7), 749–752 (2011)

    Article  Google Scholar 

  11. FEREIDOONNAZHAD, B., NAGHDABADI, R., and ARGHAVANI, J. A hyperelastic constitutive model for fiber-reinforced rubber-like materials. International Journal of Engineering Science, 71(1), 36–44 (2013)

    Article  Google Scholar 

  12. MAHNKEN, R. and DAMMANN, C. A three-scale framework for fibre-reinforced-polymer curing, part I: microscopic modeling and mesoscopic effective properties. International Journal of Solids and Structures, 100–101, 341–355 (2016)

    Article  Google Scholar 

  13. MAHNKEN, R. and DAMMAN, C. A three-scale framework for fibre-reinforced-polymer curing, part II: mesoscopic modeling and macroscopic effective properties. International Journal of Solids and Structures, 100–101, 356–375 (2016)

    Article  Google Scholar 

  14. NAZARENKO, L., STOLARSKI, H., and ALTENBACH, H. On modeling and analysis of effective properties of carbon nanotubes reinforced materials. Composite Structures, 189(7), 718–727 (2018)

    Article  Google Scholar 

  15. HOLZAPFEL, G. and OGDEN, R. W. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philosophical Transactions of the Royal Society of London A, 367, 3445–3475 (2009)

    MathSciNet  MATH  Google Scholar 

  16. RIVLIN, R. S. Large elastic deformations of isotropic materials, I: fundamental concepts. Philosophical Transactions of the Royal Society of London A, 240(822), 459–490 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  17. OGDEN, R. W. Large deformation isotropic elasticity — on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society of London A, 326(1567), 565–584 (1972)

    MATH  Google Scholar 

  18. BEATTY, M. F. Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues with examples. Applied Mechanics Reviews, 40(12), 1699–1734 (1987)

    Article  Google Scholar 

  19. GENT, A. N. A new constitutive relation for rubber. Rubber Chemistry and Technology, 69(1), 59–61 (1996)

    Article  MathSciNet  Google Scholar 

  20. TRELOAR, L. R. G. The Physics of Rubber Elasticity, 3rd ed., Oxford University Press, Oxford (2005)

    Google Scholar 

  21. ARRUDA, E. M. and BOYCE, M. C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 41(2), 389–412 (1993)

    Article  MATH  Google Scholar 

  22. BOYCE, M. C. and ARRUDA, E. M. Constitutive models of rubber elasticity: a review. Rubber Chemistry and Technology, 73(3), 504–523 (2000)

    Article  Google Scholar 

  23. OGDEN, R. W., SACCOMANDI, G., and SGURA, I. On worm-like chain models within the three-dimensional continuum mechanics framework. Philosophical Transactions of the Royal Society of London A, 462(2067), 749–768 (2006)

    MathSciNet  MATH  Google Scholar 

  24. GENDY, A. S. and SALEEB, A. F. Nonlinear material parameter estimation for characterizing hyperelastic large strain models. Computational Mechanics, 25(1), 66–77 (2000)

    Article  MATH  Google Scholar 

  25. OGDEN, R. W., SACCOMANDI, G., and SGURA, I. Fitting hyperelastic models to experimental data. Computational Mechanics, 34(4), 484–502 (2004)

    Article  MATH  Google Scholar 

  26. GAO, H., LI, W. G., CAI, L., BERRY, C., and LUO, X. Y. Parameter estimation in a Holzapfel-Ogden law for healthy myocardium. Journal of Engineering Mathematics, 95(3), 231–248 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. SHARRIFF, M. H. B. M. Nonlinear transversely isotropic solids: an alternative representation. Quarterly Journal of Mechanics and Applied Mathematics, 61(2), 129–149 (2008)

    Article  MathSciNet  Google Scholar 

  28. SHARRIFF, M. H. B. M. On the spectral constitutive modelling of transversely isotropic soft tissue: physical invariants. International Journal of Engineering Science, 120, 199–219 (2017)

    Article  MathSciNet  Google Scholar 

  29. SHARRIFF, M. H. B. M., MERODIO, J., and BUSTAMANTE, R. A nonlinear electro-elastic model with residual stresses and a preferred direction. Mathematics and Mechanics of Solids, 25(3), 838–865 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  30. SHARRIFF, M. H. B. M., BUSTAMANTE, R., and MERODIO, J. Nonlinear elastic constitutive relations of residually stressed composites with stiff curved fibres. Applied Mathematics and Mechanics (English Edition), 43(10), 1515–1530 (2022) https://doi.org/10.1007/s10483-022-2910-7

    Article  MathSciNet  MATH  Google Scholar 

  31. XIAO, H. An explicit, direct approach to obtaining multiaxial elastic potentials that exactly match data of four benchmark tests for rubbery materials, part 1: incompressible deformations. Acta Mechanica, 223(9), 2039–2063 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. WANG, S. Y., ZHAN, L., XI, H. F., BRUHNS, O. T., and XIAO, H. Hencky strain and logarithmic rate for unified approach to constitutive modeling of continua. State of the Art and Future Trends in Material Modeling, Springer, Cham, 443–484 (2019)

    Chapter  Google Scholar 

  33. TRUSDELL, C. A. and NOLL, W. Nonlinear Field Theories of Mechanics, Springer, Berlin (1965)

    Google Scholar 

  34. XIAO, H. Hencky strain and Hencky model: extending history and ongoing tradition. Multidiscipline Modeling in Materials and Structures, 1(1), 1–51 (2005)

    Article  Google Scholar 

  35. XIAO, H. Deformable micro-continua in which quantum mysteries reside. Applied Mathematics and Mechanics (English Edition), 40(12), 1805–1830 (2019) https://doi.org/10.1007/s10483-019-2546-6

    Article  MathSciNet  MATH  Google Scholar 

  36. WANG, S. Y., ZHAN, L., XI, H. F., and XIAO, H. New finite strain elastoplastic equations for accurately and explicitly simulating pseudoelastic-to-plastic transition effects of shape memory alloys. Applied Mathematics and Mechanics (English Edition), 41(10), 1583–1596 (2020) https://doi.org/10.1007/s10483-020-2659-7

    Article  MathSciNet  Google Scholar 

  37. XIAO, H. Unified explicit basis-free expressions for time rate and conjugate stress of an arbitrary Hill’s strain. International Journal of Solids and Structures, 32(22), 3327–3340 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  38. BRUHNS, O. T., MEYERS, A., and XIAO, H. Constitutive inequalities for an isotropic elastic strain-energy function based on Hencky’s logarithmic strain tensor. Proceedings of the Royal Society of London A, 457, 2207–2226 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. HAUGHTON, D. M. and MERODIO, J. The elasticity of arterial tissue affected by Marfan’s syndrome. Mechanics Research Communications, 36(6), 659–668 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. ZHAO, G. C., XI, H. F., and YANG, J. B. Transversely isotropic constitutive model of the polypropylene separator based on Rich-Hill elastoplastic constitutive theory. Journal of Electrochemical Energy Conversion and Storage, 18(2), 1–26 (2020)

    Google Scholar 

  41. ZHANG, Y. Y., LI, H., and XIAO, H. Further study of rubber-like elasticity: elastic potentials matching biaxial data. Applied Mathematics and Mechanics (English Edition), 35(1), 13–24 (2014) https://doi.org/10.1007/s10483-014-1768-x

    Article  MathSciNet  Google Scholar 

  42. YU, L. D., JIN, T. F., YIN, Z. N., and XIAO, H. Multi-axial strain-stiffening elastic potentials with energy bounds: explicit approach based on uniaxial data. Applied Mathematics and Mechanics (English Edition), 36(7), 883–894 (2015) https://doi.org/10.1007/s10483-015-1955-9

    Article  MathSciNet  Google Scholar 

  43. WANG, S. Y., ZHAN, L., XI, H. F., BRUHNS, O. T., and XIAO, H. Unified simulation of hardening and softening effects for metals up to failure. Applied Mathematics and Mechanics (English Edition), 42(12), 1685–1702 (2021) https://doi.org/10.1007/s10483-021-2793-6

    Article  MathSciNet  MATH  Google Scholar 

  44. XU, Z. H., ZHAN, L., WANG, S. Y., XI, H. F., and XIAO, H. An accurate and explicit approach to modeling realistic hardening-to-softening transition effects of metals. ZAMM-Journal of Applied Mathematics and Mechanics, 101(2), e202000122 (2020)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Siyu Wang or Heng Xiao.

Ethics declarations

Conflict of interest Heng XIAO is an editorial board member for Applied Mathematics and Mechanics (English Edition) and was not involved in the editorial review or the decision to publish this article. The authors declare no conflict of interest.

Additional information

Citation: XI, H. F., ZHAO, G. C., BRUHNS, O., WANG, S. Y., and XIAO, H. Exact simulation for direction-dependent large elastic strain responses of soft fibre-reinforced composites. Applied Mathematics and Mechanics (English Edition), 44(9), 1497–1510 (2023) https://doi.org/10.1007/s10483-023-3032-6

Project supported by the National Natural Science Foundation of China (Nos. 12172151 and 12172149), the Research Project of Introducing High-level Foreign Experts from the Ministry of Sicence and Technology of China (No. G20221990122), and the Start-up Fund from Jinan University (Guangzhou) of China (No. 88019062)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, H., Zhao, G., Bruhns, O. et al. Exact simulation for direction-dependent large elastic strain responses of soft fibre-reinforced composites. Appl. Math. Mech.-Engl. Ed. 44, 1497–1510 (2023). https://doi.org/10.1007/s10483-023-3032-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-023-3032-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation