Skip to main content
Log in

On wave dispersion of rotating viscoelastic nanobeam based on general nonlocal elasticity in thermal environment

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The present research focuses on the analysis of wave propagation on a rotating viscoelastic nanobeam supported on the viscoelastic foundation which is subject to thermal gradient effects. A comprehensive and accurate model of a viscoelastic nanobeam is constructed by using a novel nonclassical mechanical model. Based on the general nonlocal theory (GNT), Kelvin-Voigt model, and Timoshenko beam theory, the motion equations for the nanobeam are obtained. Through the GNT, material hardening and softening behaviors are simultaneously taken into account during wave propagation. An analytical solution is utilized to generate the results for torsional (TO), longitudinal (LA), and transverse (TA) types of wave dispersion. Moreover, the effects of nonlocal parameters, Kelvin-Voigt damping, foundation damping, Winkler-Pasternak coefficients, rotating speed, and thermal gradient are illustrated and discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATTIA, M. A. Investigation of size-dependent quasistatic response of electrically actuated nonlinear viscoelastic microcantilevers and microbridges. Meccanica, 52, 2391–2420 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. ELTAHER, M. A., SHANAB, R. A., and MOHAMED, N. A. Analytical solution of free vibration of viscoelastic perforated nanobeam. Archive of Applied Mechanics, 93(1), 221–243 (2023)

    Article  Google Scholar 

  3. RAHMANIAN, S. and HOSSEINI-HASHEMI, S. Size-dependent resonant response of a double-layered viscoelastic nanoresonator under electrostatic and piezoelectric actuations incorporating surface effects and Casimir regime. International Journal of Non-Linear Mechanics, 109, 118–131 (2019)

    Article  Google Scholar 

  4. CABAN, S., AYTEKIN, E., SAHIN, A., and CAPAN, Y. Nanosystems for drug delivery. Drug Design and Delivery, 2(1), 2 (2014)

    Google Scholar 

  5. CAO, D. Y. and WANG, Y. Q. Wave dispersion in viscoelastic lipid nanotubes conveying viscous protein solution. The European Physical Journal Plus, 135, 24 (2020)

    Article  Google Scholar 

  6. SARPARAST, H., ALIBEIGLOO, A., BORJALILOU, V., and KOOCHAKIANFARD, O. Forced and free vibrational analysis of viscoelastic nanotubes conveying fluid subjected to moving load in hygro-thermo-magnetic environments with surface effects. Archives of Civil and Mechanical Engineering, 22(4), 172 (2022)

    Article  Google Scholar 

  7. MARTINS-JÚNIOR, P. A., ALCÂNTARA, C. E., RESENDE, R. R., and FERREIRA, A. J. Carbon nanotubes: directions and perspectives in oral regenerative medicine. Journal of Dental Research, 92(7), 575–583 (2013)

    Article  Google Scholar 

  8. ANSARI, R., NESARHOSSEINI, S., FARAJI-OSKOUIE, M., and ROUHI, H. Size-dependent buckling analysis of piezoelectric nanobeams resting on elastic foundation considering flexoelectricity effect using the stress-driven nonlocal model. The European Physical Journal Plus, 136, 876 (2021)

    Article  Google Scholar 

  9. ZAREPOUR, M., HOSSEINI, S. A., and GHADIRI, M. Free vibration investigation of nano mass sensor using differential transformation method. Applied Physics A, 123, 1–10 (2017)

    Article  Google Scholar 

  10. ALSHENAWY, R., SAHMANI, S., SAFAEI, B., ELMOGHAZY, Y., AL-ALWAN, A., and AL NUWAIRAN, M. Surface stress effect on nonlinear dynamical performance of nanobeam-type piezoelectric energy harvesters via meshless collocation technique. Engineering Analysis with Boundary Elements, 152, 104–119 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  11. ALI, F., RAZA, W., LI, X., GUL, H., and KIM, K. H. Piezoelectric energy harvesters for biomedical applications. Nano Energy, 57, 879–902 (2019)

    Article  Google Scholar 

  12. WANG, Y., HONG, M., VENEZUELA, J., LIU, T., and DARGUSCH, M. Expedient secondary functions of flexible piezoelectrics for biomedical energy harvesting. Bioactive Materials, 22, 291–311 (2023)

    Article  Google Scholar 

  13. EBRAHIMI, F. and BARATI, M. R. Damping vibration behavior of viscoelastic porous nanocrystalline nanobeams incorporating nonlocal-couple stress and surface energy effects. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 43, 187–203 (2019)

    Article  Google Scholar 

  14. NADERI, A., BEHDAD, S., and FAKHER, M. Size dependent effects of two-phase viscoelastic medium on damping vibrations of smart nanobeams: an efficient implementation of GDQM. Smart Materials and Structures, 31 (4), 045007 (2022)

    Article  Google Scholar 

  15. EL-MOUMEN, A., TARFAOUI, M., NACHTANE, M., and LAFDI, K. Carbon nanotubes as a player to improve mechanical shock wave absorption. Composites Part B: Engineering, 164, 67–71 (2019)

    Article  Google Scholar 

  16. WANG, X., WU, S., YIN, J., MORADI, Z., SAFA, M., and KHADIMALLAH, M. A. On the electromechanical energy absorption of the reinforced composites piezoelectric MEMS via adaptive neuro-fuzzy inference system and MCS theory. Composite Structures, 303, 116246 (2023)

    Article  Google Scholar 

  17. LIU, H., LIU, H., and YANG, J. Vibration of FG magneto-electro-viscoelastic porous nanobeams on visco-Pasternak foundation. Composites Part B: Engineering, 155, 244–256 (2018)

    Article  Google Scholar 

  18. BAGHERI, R. and TADI-BENI, Y. On the size-dependent nonlinear dynamics of viscoelastic/flexoelectric nanobeams. Journal of Vibration and Control, 27(17–18), 2018–2033 (2021)

    Article  MathSciNet  Google Scholar 

  19. ERINGEN, A. C. Nonlocal continuum mechanics based on distributions. International Journal of Engineering Science, 44(3–4), 141–147 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. LI, C., ZHU, C., LIM, C. W., and LI, S. Nonlinear in-plane thermal buckling of rotationally restrained functionally graded carbon nanotube reinforced composite shallow arches under uniform radial loading. Applied Mathematics and Mechanics (English Edition), 43(12), 1821–1840 (2022) https://doi.org/10.1007/s10483-022-2917-7

    Article  MathSciNet  MATH  Google Scholar 

  21. LAM, D. C., YANG, F., CHONG, A. C. M., WANG, J., and TONG, P. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, 51 (8), 1477–1508 (2003)

    Article  MATH  Google Scholar 

  22. DINDARLOO, M. H. and LI, L. Vibration analysis of carbon nanotubes reinforced isotropic doubly-curved nanoshells using nonlocal elasticity theory based on a new higher order shear deformation theory. Composites Part B: Engineering, 175, 107170 (2019)

    Article  Google Scholar 

  23. LAL, R. and DANGI, C. Thermomechanical vibration of bi-directional functionally graded nonuniform Timoshenko nanobeam using nonlocal elasticity theory. Composites Part B: Engineering, 172, 724–742 (2019)

    Article  Google Scholar 

  24. SOLTANI, M., ATOUFI, F., MOHRI, F., DIMITRI, R., and TORNABENE, F. Nonlocal elasticity theory for lateral stability analysis of tapered thin-walled nanobeams with axially varying materials. Thin-Walled Structures, 159, 107268 (2021)

    Article  Google Scholar 

  25. TORABI, J., NIIRANEN, J., and ANSARI, R. Nonlinear finite element analysis within strain gradient elasticity: Reissner-Mindlin plate theory versus three-dimensional theory. European Journal of Mechanics-A/Solids, 87, 104221 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. EGHBALI, M., HOSSEINI, S. A., and POURSEIFI, M. Free transverse vibrations analysis of size-dependent cracked piezoelectric nano-beam based on the strain gradient theory under mechanic-electro forces. Engineering Analysis with Boundary Elements, 143, 606–612 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  27. HU, H., YU, T., and BUI, T. Q. Functionally graded curved Timoshenko microbeams: a numerical study using IGA and modified couple stress theory. Composite Structures, 254, 112841 (2020)

    Article  Google Scholar 

  28. HASSANNEJAD, R., HOSSEINI, S. A., and ALIZADEH-HAMIDI, B. Influence of non-circular cross section shapes on torsional vibration of a micro-rod based on modified couple stress theory. Acta Astronautica, 178, 805–812 (2021)

    Article  Google Scholar 

  29. LIM, C. W., ZHANG, G., and REDDY, J. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. Journal of the Mechanics and Physics of Solids, 78, 298–313 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. JIN, H., SUI, S., ZHU, C., and LI, C. Axial free vibration of rotating FG piezoelectric nanorods accounting for nonlocal and strain gradient effects. Journal of Vibration Engineering and Technologies, 11(2), 537–549 (2023)

    Article  Google Scholar 

  31. THAI, C. H., FEREIRA, A. J. M., and PHUNG-VAN, P. A nonlocal strain gradient isogeometric model for free vibration analysis of magneto-electro-elastic functionally graded nanoplates. Composite Structures, 316, 117005 (2023)

    Article  Google Scholar 

  32. KHANIKI, H. B. Vibration analysis of rotating nanobeam systems using Eringen’s two-phase local/nonlocal model. Physica E: Low-Dimensional Systems and Nanostructures, 99, 310–319 (2018)

    Article  Google Scholar 

  33. FANG, J., YIN, B., ZHANG, X., and YANG, B. Size-dependent vibration of functionally graded rotating nanobeams with different boundary conditions based on nonlocal elasticity theory. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(6), 2756–2774 (2022)

    Google Scholar 

  34. EBRAHIMI, F. and HAGHI, P. Elastic wave dispersion modelling within rotating functionally graded nanobeams in thermal environment. Advances in Nano Research, 6(3), 201 (2018)

    Google Scholar 

  35. EBRAHIMI, F. and DABBAGH, A. Wave dispersion characteristics of rotating heterogeneous magneto-electro-elastic nanobeams based on nonlocal strain gradient elasticity theory. Journal of Electromagnetic Waves and Applications, 32(2), 138–169 (2018)

    Article  Google Scholar 

  36. RAHMANI, A., SAFAEI, B., and QIN, Z. On wave propagation of rotating viscoelastic nanobeams with temperature effects by using modified couple stress-based nonlocal Eringen’s theory. Engineering with Computers, 38, 2681–2701 (2022)

    Article  Google Scholar 

  37. EBRAHIMI, F., BARATI, M. R., and HAGHI, P. Wave propagation analysis of size-dependent rotating inhomogeneous nanobeams based on nonlocal elasticity theory. Journal of Vibration and Control, 24(17), 3809–3818 (2018)

    Article  MathSciNet  Google Scholar 

  38. SHAAT, M. A general nonlocal theory and its approximations for slowly varying acoustic waves. International Journal of Mechanical Sciences, 130, 52–63 (2017)

    Article  Google Scholar 

  39. FAROUGHI, S., RAHMANI, A., and FRISWELL, M. On wave propagation in two-dimensional functionally graded porous rotating nano-beams using a general nonlocal higher-order beam model. Applied Mathematical Modelling, 80, 169–190 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  40. RAHMANI, A., FAROUGHI, S., and FRISWELL, M. I. The vibration of two-dimensional imperfect functionally graded (2D-FG) porous rotating nanobeams based on general nonlocal theory. Mechanical Systems and Signal Processing, 144, 106854 (2020)

    Article  Google Scholar 

  41. FAROUGHI, S. and SHAAT, M. Poisson’s ratio effects on the mechanics of auxetic nanobeams. European Journal of Mechanics-A/Solids, 70, 8–14 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. LI, H. N., CHENG, L., SHEN, J. P., and YAO, L. Q. Vibration analysis of rotating functionally graded piezoelectric nanobeams based on the nonlocal elasticity theory. Journal of Vibration Engineering and Technologies, 9, 1155–1173 (2021)

    Article  Google Scholar 

  43. WANG, X. Y., LUO, Q. Y., LI, C., and XIE, Z. Y. On the out-of-plane vibration of rotating circular nanoplates. Transactions of Nanjing University of Aeronautics and Astronautics, 39(1), 23–35 (2022)

    Google Scholar 

  44. EBRAHIMI, F. and BARATI, M. R. Effect of three-parameter viscoelastic medium on vibration behavior of temperature-dependent non-homogeneous viscoelastic nanobeams in a hygro-thermal environment. Mechanics of Advanced Materials and Structures, 25(5), 361–374 (2018)

    Article  Google Scholar 

  45. MOHAMMADI, M., SAFARABADI, M., RASTGOO, A., and FARAJPOUR, A. Hygromechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment. Acta Mechanica, 227, 2207–2232 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. ABOUELREGAL, A. E., AHMAD, H., NOFAL, T. A., and ABU-ZINADAH, H. Thermoviscoelastic fractional model of rotating nanobeams with variable thermal conductivity due to mechanical and thermal loads. Modern Physics Letters B, 35(18), 2150297 (2021)

    Article  Google Scholar 

  47. SHAAT, M. and ABDELKEFI, A. New insights on the applicability of Eringen’s nonlocal theory. International Journal of Mechanical Sciences, 121, 67–75 (2017)

    Article  Google Scholar 

  48. BOYINA, K. and PISKA, R. Wave propagation analysis in viscoelastic Timoshenko nanobeams under surface and magnetic field effects based on nonlocal strain gradient theory. Applied Mathematics and Computation, 439, 127580 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  49. ZEIGHAMPOUR, H., TADI-BENI, Y., and KARIMIPOUR, I. Material length scale and nonlocal effects on the wave propagation of composite laminated cylindrical micro/nanoshells. The European Physical Journal Plus, 132, 503 (2017)

    Article  Google Scholar 

  50. GOPALAKRISHNAN, S. and NARENDAR, S. Wave Propagation in Nanostructures: Nonlocal Continuum Mechanics Formulations, Springer Science and Business Media, Germany (2013)

    Book  Google Scholar 

  51. ELTAHER, M. A., KHATER, M. E., and EMAM, S. A. A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Applied Mathematical Modelling, 40(5–6), 4109–4128 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Faroughi.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Citation: RAHMANI, A., FAROUGHI, S., and SARI, M. On wave dispersion of rotating viscoelastic nanobeam based on general nonlocal elasticity in thermal environment. Applied Mathematics and Mechanics (English Edition), 44(9), 1577–1596 (2023) https://doi.org/10.1007/s10483-023-3031-8

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, A., Faroughi, S. & Sari, M. On wave dispersion of rotating viscoelastic nanobeam based on general nonlocal elasticity in thermal environment. Appl. Math. Mech.-Engl. Ed. 44, 1577–1596 (2023). https://doi.org/10.1007/s10483-023-3031-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-023-3031-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation